首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermoresponsive nanocomposite thin films composed of alternating layers of silica and polymerized N-isopropylacrylamide (NIPAM) or NIPAM plus dodecyl methacrylate (DM) hydrogels were prepared by surfactant-directed evaporation-induced self-assembly (EISA). During EISA, the organic monomers partition within the hydrophobic domains of a lamellar mesophase. In-situ polymerization via a free radical process results in a 1-2 nm thick hydrogel phase sandwiched between layers of silica oriented parallel to the substrate surface. The thermoresponsiveness of PNIPAM is preserved in this confined environment, and the polymeric layers reversibly swell and deswell by a factor of 2 in water upon temperature changes around the transition temperature of PNIPAM (32 degrees C). The composition, mesostructure, and environmental response were studied by detailed NMR, TGA, and SAXS analyses.  相似文献   

2.
Nanogel nanosecond photonic crystal optical switching   总被引:3,自引:0,他引:3  
We developed a robust nanosecond photonic crystal switching material by using poly(N-isopropylacrylamide) (PNIPAM) nanogel colloidal particles that self-assemble into crystalline colloidal arrays (CCAs). The CCA was polymerized into a loose-knit hydrogel which permits the individual embedded nanogel PNIPAM particles to coherently and synchronously undergo their thermally induced volume phase transitions. A laser T-jump from 30 to 35 degrees C actuates the nanogel particle shrinkage; the resulting increased diffraction decreases light transmission within 900 ns. Additional transmission decreases occur with characteristic times of 19 and 130 ns. Individual NIPAM sphere volume switching occurs in the approximately 100 ns time regime. These nanogel nanosecond phenomena may be useful in the design of fast photonic crystal switches and optical limiting materials. Smaller nanogels will show even faster volume phase transitions.  相似文献   

3.
Polymerizable nanogels were prepared by self-assembly of cholesteryl group-bearing pullulan (CHP) with methacryloyl groups (CHPMA). The CHPMA nanogel was polymerized with 2-methacryloyloxyethyl phosphorylcholine (MPC) by radical polymerization in dilute aqueous solution. The solution properties of the polymers in water were investigated by TEM, SEC-MALS, and fluorescence quenching technique. Monodispersed hybrid nanogels of CHPMA-MPC (CM nanogels) (25-30 nm in radius of gyration) were obtained by using CHPMA nanogel as a seed-nanogel. CM nanogels have a dual cross-linking structure that is physically cross-linked with the cholesteryl groups and chemically cross-linked with the MPC polymer chains. CM nanogels trap heat-denatured carbonic anhydrase B (CAB) and prevent their aggregations. The nanogels maintained the ability of trapping and releasing enzymes by host-guest interaction of cholesteryl group and cyclodextrin.  相似文献   

4.
This paper describes the double phase transition behavior of a thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) brush at the surface of a hydrophobic core. Reversible addition-fragmentation transfer (RAFT) polymerization of N-isopropylacrylamide (NIPAM) was conducted by using a hyperbranched polyester (Boltorn H40) based macroRAFT agent. The resultant multiarm star block copolymer (H40-PNIPAM) exists as unimolecular micelles with hydrophobic H40 as the core, densely grafted PNIPAM brush as the shell. A combination of laser light scattering (LLS) and microdifferential scanning calorimetry (micro-DSC) studies of H40-PNIPAM in aqueous solution reveals double phase transitions of the PNIPAM corona, which is in contrast to the fact that free PNIPAM homopolymer in aqueous solution exhibits a lower critical solution temperature (LCST) at approximately 32 degrees C. The first phase transition takes place in the broad temperature range 20-30 degrees C, which can be tentatively ascribed to the n-cluster-induced collapse of the inner region of the PNIPAM brush close to the H40 core; the second phase transition occurs above 30 degrees C, which can be ascribed to the outer region of PNIPAM brush. Employing the RAFT chain extension technique, the inner and outer part of PNIPAM brush were then selectively labeled with pyrene derivatives, respectively; temperature-dependent excimer fluorescence measurements further support the conclusion that the inner part of PNIPAM brush collapses first at lower temperatures, followed by the collapse of the outer part at higher temperatures.  相似文献   

5.
Poly(N-isopropylacrylamide) (PNIPAM) with a narrow molecular weight distribution was prepared by reversible addition-fragmentation chain transfer (RAFT) radical polymerization. A dithioester group at the chain end of PNIPAM thus prepared was cleaved by treating with 2-ethanolamine to provide thiol-terminated PNIPAM with which gold nanoparticles were coated via reactions of the terminal thiol with gold. The thermoresponsive nature of the maximum wavelength of the surface plasmon band and hydrodynamic radius (Rh) for the PNIPAM-coated gold nanoparticles were found to be sensitively affected by added salt. In pure water, Rh for the PNIPAM-coated gold nanoparticles at 40 degrees C (>lower critical solution temperature (LCST)) was smaller than that at 25 degrees C (相似文献   

6.
Phase transition behavior of unimolecular dendritic three-layer nanostructures with dual thermoresponsive coronas is studied. Successive reversible addition-fragmentation transfer (RAFT) polymerizations of N-isopropylacrylamide (NIPAM) and 2-(dimethylamino)ethyl methacrylate (DMA) were conducted using fractionated fourth-generation hyperbranched polyester (Bolton H40) based macroRAFT agent. At lower temperatures (<20 degrees C), dendritic macromolecules H40-poly(N-isopropylacrylamide)-poly(2-(dimethylamino)ethyl methacrylate) (H40-PNIPAM-PDMA) exist as unimolcular core-shell-corona nanostructures with hydrophobic H40 as the core, swollen PNIPAM as the inner shell, and swollen PDMA as the corona. PNIPAM and PDMA homopolymers undergo phase transitions at their lower critical solution temperatures (LCST), which are found to be 32 degrees C for PNIPAM and 40-50 degrees C for PDMA, respectively. Upon continuously heating through the LCSTs of PNIPAM and PDMA, such dendritic unimolecular micelles exhibit two-stage thermally induced collapse. This process is reversible with a two-stage reswelling upon cooling. Laser light scattering, micro-differential scanning calorimetry, and excimer fluorescence measurements are used to investigate the double phase transitions.  相似文献   

7.
A novel temperature-responsive hyperbranched multiarm copolymer with a hydrophobic hyperbranched poly(3-ethyl-3-(hydroxymethyl)oxetane)(HBPO) core and thermosensitive poly(N-isopropylacrylamide)(PNIPAM) arms was synthesized via the atom transfer radical polymerization(ATRP) of NIPAM monomers from a hyperbranched HBPO macroinitiator.It was found that HBPO-star-PNIPAM self-assembled into multimolecular micelles(around 60 nm) in water at room temperature according to pyrene probe fluorescence spectrometry,1H N...  相似文献   

8.
Octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane (OpePOSS) was used as a nanocrosslinking agent to prepare the crosslinked poly(N-isopropylacrylamide) (PNIPAM) networks with POSS content up to 50 wt%. The inter-component crosslinking was achieved via the reaction between NH moieties in amide group of PNIPAM and epoxide groups of OpePOSS. When the organic-inorganic nanocomposites were swollen in water the POSS-crosslinked PNIPAM exhibited the characteristics of hydrogels. With the moderate contents of POSS, the POSS-containing hybrid hydrogels displayed much faster response rates in swelling, deswelling and reswelling experiments than the PNIPAM hydrogels prepared via the free radical copolymerization of N-isopropylacrylamide (NIPAM) and N,N(')-methylenebisacrylamide (viz. the conventional crosslinker). The improved hydrogel properties have been interpreted on the basis of the formation of the nanosized hydrophobic microdomains around the POSS moieties (i.e., the nanocrosslinking sites).  相似文献   

9.
Silver nanoparticles (Ag NPs) stabilized by a thermoresponsive polymer, poly(N-isopropylacrylamide) (PNIPAM), have been synthesized by the reduction of silver ions with NaBH(4) in aqueous solutions. The obtained Ag NPs are very stable at room temperature due to the extended coil conformation of the PNIPAM chain at temperatures below its volume phase transition temperature ( approximately 32 degrees C). At higher temperatures (such as 45 degrees C) above the phase transition of PNIPAM, only minute aggregation between Ag NPs was observed, showing that the collapsed PNIPAM chains still retain the ability to stabilize Ag NPs. The PNIPAM-stabilized Ag NPs were then characterized as a function of the thermal phase transition of PNIPAM by UV-vis spectroscopy, dynamic light scattering, transmission electron microscopy, and cyclic voltammeter. Consistent results were obtained showing that the phase transition of PNIPAM has some effect on the optical properties of Ag NPs. Switchable electrochemical response of the PNIPAM-stabilized Ag NPs triggered by temperature change was observed.  相似文献   

10.
Nanogels have been demonstrated to be desirable for hydrophilic anticancer drug delivery. This study presents a novel nanogel consisting of sodium alginate-modified graphene oxide (SA-GO) and N-isopropylacrylamide (NIPAM) for sustained delivery of doxorubicin (DOX) drug. The PNIPAM/SA-GO nanogel was studied by various techniques including scanning electron microscopy, atomic force microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, and thermo-gravimetric analysis. Subsequently, the thermo-responsive behavior of the PNIPAM/SA-GO nanogel was investigated by UV–Vis spectroscopy. DOX was successfully loaded into the PNIPAM/SA-GO nanogel in order to study entrapment efficiency and drug release behavior. Moreover, biocompatibility of the DOX-loaded PNIPAM/SA-GO nanogel was examined against Hella cells and was compared with free PNIPAM/SA-GO nanogel and DOX. This work offers that the nanogels could be developed further as an effective bioactive molecule delivery system.  相似文献   

11.
On the structure of poly(N-isopropylacrylamide) microgel particles   总被引:3,自引:0,他引:3  
This investigation presents a study of the internal structure of poly(NIPAM/xBA) microgel particles (NIPAM and BA are N-isopropylacrylamide and N,N'-methylene bisacrylamide, respectively). In this study, x is the wt % of BA used during microgel synthesis. Two values of x were used to prepare the microgels, 1 and 10. The microgel dispersions were investigated using photon correlation spectroscopy (PCS) and small-angle neutron scattering (SANS). These measurements were made as a function of temperature in the range 30-50 degrees C. Scattering maxima were observed for the microgels when the dispersion temperatures were less than their volume phase transition temperatures. The SANS data were fitted using a model which consisted of Porod and Ornstein-Zernike form factors. The analysis showed that the macroscopic hydrodynamic diameter of the microgel particles and the submicroscopic mesh size of the network are linearly related. This is the first study to demonstrate affine swelling for poly(NIPAM/xBA) microgels. Furthermore, the mesh size does not appear to be strongly affected by x. The data suggest that the swollen particles have a mostly homogeneous structure, although evidence for a thin, low segment density shell is presented. The study confirms that poly(NIPAM/xBA) microgel particles have a core-shell structure. The shell has an average thickness of approximately 20 nm for poly(NIPAM/1BA) particles which appears to be independent of temperature over the range studied. The analysis suggests that the particles contained approximately 50 vol % water at 50 degrees C. The molar mass of the poly(NIPAM/1BA) microgel particles was estimated as 6 x 10(9) g mol(-1).  相似文献   

12.
The aim of this study was to develop a novel surface graft architecture in which albumin is covalently fixed at the growing chain end of the hydrophilic polymers: poly(N, N-dimethylacylamide), PDMAM, and poly(N-isopropylacrylamide), PNIPAM. Photoiniferter-based surface-grafted polymers were prepared using either an albuminated iniferter or a nonalbuminated iniferter, both of which were derivatized on glass surfaces, and ultraviolet (UV)-light-irradiated in the presence of a DMAM or NIPAM monomer. Surface chemical composition analysis by X-ray photoelectron spectroscopy, contact angle measurement, immunostaining using fluorescence labeled antibody and the measurement of graft thickness, as determined from force-distance curves obtained in water at 25 degrees C and 37 degrees C by atomic force microscopy, evidenced that the thickness of graft layer increased with photoirradiation time and albumin molecules exist at growing chain ends. For PNIPAM-grafted surfaces, the interconversion between swollen and collapsed graft chains was observed below and above the lower critical solution temperature of PNIPAM. The potential application of a thermoresponsive graft with albumin covalently fixed at its growing chain end was discussed in terms of "active" nonfouling surface design based on the temperature-dependent switching of phase transition.  相似文献   

13.
Rapidly shrinking poly(N‐isopropyl acrylamide) (PNIPAM) hydrogels are prepared by crosslinking with self‐assembled nanogels that consist of cholesteryl‐ and methacryloyl‐substituted pullulan (CHPMA). The CHPMA nanogel (Rh = 26.4 nm) was used as a crosslinker for a hydrophilic nanodomain. Transmission electron microscopy images of the nanogel‐crosslinked PNIPAM hydrogel reveal a well‐defined nanoporous structure. The nanogel‐crosslinked PNIPAM hydrogel shows rapid shrinking based on its structure. The shrinking half‐time was ≈2 min, which is about 3 400 times faster than that of a PNIPAM hydrogel crosslinked by methylene(bisacrylamide).

  相似文献   


14.
A series of novel p(N-isopropylacrylamide) (PNIPAM) hydrogels were synthesized by radical copolymerization of N-isopropylacrylamide (NIPAM) and 3-methacryloxypropyltrimethoxysilane (MPTMS). The copolymers were then crosslinked through hydrolysis of the siloxane in acetic acid/water mixed solvent. Beta-cyclodextrin (Beta-CD) was introduced into the polymeric networks by condensation of 3-glycidoxypropyltrimethoxysilane derived beta-cyclodextrin (KH560-beta-CD) with MPTMS under acidic condition. These gels were heterogeneous, porous and exhibited fast deswelling kinetics when the temperature was elevated to above lower critical solution temperature (LCST). The swelling ratios of the gels containing beta-CD at room temperature were higher than that of the normal PNIPAM hydrogel, which was caused by the lower crosslinking density in beta-CD contained gels. In comparison to that of the normal PNIPAM gel, the amount of loaded-drug in the hydrogel containing beta-CD was higher, and the release time of 5-fluorouracil (5-Fu) was prolonged, which was attributed to the formation of inclusion compounds between 5-Fu and beta-CD in gel network.  相似文献   

15.
A series of novel p(N-isopropylacrylamide) (PNIPAM) hydrogels were synthesized by radical copolymerization of N-isopropylacrylamide (NIPAM) and 3-methacryloxypropyltrimethoxysilane (MPTMS). The copolymers were then crosslinked through hydrolysis of the siloxane in acetic acid/water mixed solvent. Beta-cyclodextrin (Beta-CD) was introduced into the polymeric networks by condensation of 3-glycidoxypropyltrimethoxysilane derived beta-cyclodextrin (KH560-beta-CD) with MPTMS under acidic condition. These gels were heterogeneous, porous and exhibited fast deswelling kinetics when the temperature was elevated to above lower critical solution temperature (LCST). The swelling ratios of the gels containing beta-CD at room temperature were higher than that of the normal PNIPAM hydrogel, which was caused by the lower crosslinking density in beta-CD contained gels. In comparison to that of the normal PNIPAM gel, the amount of loaded-drug in the hydrogel containing beta-CD was higher, and the release time of 5-fluorouracil (5-Fu) was prolonged, which was attributed to the formation of inclusion compounds between 5-Fu and beta-CD in gel network.  相似文献   

16.
The graft copolymer (APN) of alginate and poly(N-isopropylacrylamide) (PNIPAM) were synthesized and APN beads were prepared by dropping the aqueous solution of the copolymer into an aqueous solution of Ca(2+) solution. Alginate chains were employed to play a role in forming beads by electrostatic interactions with a multivalent ion, Ca(2+). Grafted PNIPAM segments were adopted to act as a valve for the pores of the beads, since they exhibit the properties of thermal contraction and expansion. The percent of release of blue dextran from APN beads was higher at 40 degrees C than at 25 degrees C. The difference in the release between two temperatures became more distinguishable when the content of PNIPAM in APN beads is higher. Below lower critical solution temperature (LCST), the expanded PNIPAM would close the pores of the beads, resulting in a lower release rate. Above LCST, the thermally contracted polymer would open the pores, resulting in a higher release rate. The percent of release from APN beads were investigated when the temperature of the release medium is altered. The release rate was relatively low at 25 degrees C. The temperature, however, changed up to 40 degrees C, a marked increase in the release rate was observed. These trends were found to be reproducible when the temperature was repeatedly altered between 25 and 40 degrees C. As a result, a stepwise response to the temperature alteration was obtained.  相似文献   

17.
A polymeric photosensitizer, poly(NIPAM-co-BP), consisting of N-isopropylacrylamide (NIPAM) and benzophenone (BP) units, demonstrates a temperature-controlled oxygenation activity in water. The system promotes a heat-induced oxygenation enhancement at <17 degrees C and suppression at >22 degrees C. This unprecedented photo-oxygenation activity is triggered by a heat-induced phase transition of the polymer from coil to micelle, and then to globule state, cleverly controlling the stability and diffusion of singlet oxygen and the location of substrate.  相似文献   

18.
Monodispersed microgels composed of poly(acrylic acid) (PAAc) and poly(N-isopropylacrylamide) (PNIPAM) interpenetrating polymer networks (IPN) were synthesized by a two-step method, first preparing PNIPAM microgel and then polymerizing acrylic acid that interpenetrates into the PNIPAM network. The growth kinetics of the IPN particle formation was obtained by measuring the turbidity and particle hydrodynamic radius (Rh) as a function of reaction time. IPN and PNIPAM microgels were characterized and compared by dynamic and static light scattering techniques. The concentrated aqueous solutions of the PNIPAM-PAAc IPN microgels exhibit an inverse thermoreversible gelation. In contrast to polymer solutions of poly(NIPAM-co-AAc) that have the inverse thermoreversible gelation, our system can self-assemble into an ordered structure, displaying bright colors. Furthermore, IPN microgels undergo the reversible volume phase transitions in response to both pH and temperature changes associated with PAAc and PNIPAM networks, respectively.  相似文献   

19.
Thermosensitive poly[N-isopropylacrylamide(NIPAM)-co-N-acryloyl-L-phenylalanine ethyl ester (NALPE)] microgels were prepared by the free radical polymerization of NIPAM and chiral monomer, NALPE. Such microgels exhibited spherical shape and favorable monodispersity. Increasing the content of NALPE units would enhance the average diameter, but decrease the thermosensitivity and volume-phase transition temperatures of the microgels. Compared with PNIPAM microgels, the microgels containing NALPE units performed chiral recognozable capacities for D-phenylalanine and D-tartaric acid, and the enantioselectivity and adsorption capacity of the microgels improved with increasing the temperature and/or the content of NALPE units.  相似文献   

20.
Thermo-responsive crosslinked nanogels of N-isopropylacrylamide (NIPAM) were synthesized by emulsion polymerization and the size was varied using different concentrations of surfactant (sodium dodecyl sulfate, SDS) in the polymerization process. The collapse behavior of the nanogels at the lower critical solution temperature at around 32 °C was investigated by dynamic light scattering, and by combined static light scattering (SLS) and small-angle X-ray scattering (SAXS). The combined data from SLS and SAXS were analyzed by a model for the nanogels which at intermediate temperatures included a central core and a more diffuse outer layer describing pending polymer chains with a low degree of cross linking. In the expanded state, the particles were modeled with a single component with a broad graded surface. In the collapsed state the nanogels were modeled as homogeneous and relatively compact particles. The amount of surfactant used had a profound effect on the final size of the nanogels owing to the phenomenon of colloidal stabilization of the emulsion droplets during polymerization. The combination of SLS and SAXS as applied to the nanogels is an attractive method for particle characterization as it spans a very large range of scattering vector from q = 0.0004 to 0.22 ?(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号