首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some classical and quantum theories are characterized within the convexity approach to probabilistic physical theories. In particular, the structure of the so-called DHB quantum theory will be analyzed. It turns out that the natural generalization of the standard Hubert space quantum mechanics, the operational one, is such a theory. The operational Hilbert space quantum theory will be reconstructed from the (weak) projection postulate and the complementarity principle. This is then used to argue that the DHB quantum theory is identical with the operational Hilbert space quantum theory.  相似文献   

2.
In this work a generalization of the consistent histories approach to quantum mechanics is presented. We first critically review the consistent histories approach to nonrelativistic quantum mechanics in a mathematically rigorous way and give some general comments about it. We investigate to what extent the consistent histories scheme is compatible with the results of the operational formulation of quantum mechanics. According to the operational approach, nonrelativistic quantum mechanics is most generally formulated in terms of effects, states, and operations. We formulate a generalized consistent histories theory using the concepts and the terminology which have proven useful in the operational formulation of quantum mechanics. The logical rule of the logical interpretation of quantum mechanics is generalized to the present context. The algebraic structure of the generalized theory is studied in detail.  相似文献   

3.
4.
Quantum theory does not only predict probabilities, but also relative phases for any experiment, that involves measurements of an ensemble of systems at different moments of time. We argue, that any operational formulation of quantum theory needs an algebra of observables and an object that incorporates the information about relative phases and probabilities. The latter is the (de)coherence functional, introduced by the consistent histories approach to quantum theory. The acceptance of relative phases as a primitive ingredient of any quantum theory, liberates us from the need to use a Hilbert space and non-commutative observables. It is shown, that quantum phenomena are adequately described by a theory of relative phases and non-additive probabilities on the classical phase space. The only difference lies on the type of observables that correspond to sharp measurements. This class of theories does not suffer from the consequences of Bell's theorem (it is not a theory of Kolmogorov probabilities) and Kochen–Specker's theorem (it has distributive logic). We discuss its predictability properties, the meaning of the classical limit and attempt to see if it can be experimentally distinguished from standard quantum theory. Our construction is operational and statistical, in the spirit of Copenhagen, but makes plausible the existence of a realist, geometric theory for individual quantum systems.  相似文献   

5.
Based on the resource theory for quantifying the coherence of quantum channels, we introduce a new coherence quantifier for quantum channels via maximum relative entropy. We prove that the maximum relative entropy for coherence of quantum channels is directly related to the maximally coherent channels under a particular class of superoperations, which results in an operational interpretation of the maximum relative entropy for coherence of quantum channels. We also introduce the conception of subsuperchannels and sub-superchannel discrimination. For any quantum channels, we show that the advantage of quantum channels in sub-superchannel discrimination can be exactly characterized by the maximum relative entropy of coherence for quantum channels. Similar to the maximum relative entropy of coherence for channels, the robustness of coherence for quantum channels has also been investigated. We show that the maximum relative entropy of coherence for channels provides new operational interpretations of robustness of coherence for quantum channels and illustrates the equivalence of the dephasing-covariant superchannels,incoherent superchannels, and strictly incoherent superchannels in these two operational tasks.  相似文献   

6.
Stochastic quantum mechanics is a quantum theory in which the basic limitations of real-world measuring instruments, due to their intrinsically quantum nature, are taken into account. Among other things this leads to a new operational definition of space-time, called quantum space-time. Fundamental to this approach is the formulation of quantum mechanics over phase space rather than just over position or momentum space. A concept of extended particle is a natural outgrowth of this development. Gauge and internal symmetry have a natural place within the theory, and preliminary computations combining some old ideas due to Born with more recent ideas on symmetry breaking suggest that the theory could lead to a mass formula compatible with known data on the low-lying baryons.Supported in part by NSERC Grant, No. A8403.  相似文献   

7.
The question of the determination of the state of the system during a measurement experiment is discussed within quantum theory, as a part of the more general measurement’s problem. I propose a counterfactual interpretation of the measurement process which answers the question from a conceptual point of view. This interpretation turns out to be consistent with the predictions of quantum theory, but it presents difficulties from an operational point of view.  相似文献   

8.
We discuss a quantum counterpart, in the sense of the Berezin–Toeplitz quantization, of certain constraints on Poisson brackets coming from “hard” symplectic geometry. It turns out that they can be interpreted in terms of the quantum noise of observables and their joint measurements in operational quantum mechanics. Our findings include various geometric mechanisms of quantum noise production and a noise-localization uncertainty relation. The methods involve Floer theory and Poisson bracket invariants originated in function theory on symplectic manifolds.  相似文献   

9.
Causal independence of the simultaneous positions and momenta of two distinguishable particles in nonrelativistic physics and causal independence of events in two relatively spacelike regions of space-time in relativity are analyzed and discussed. This review paper formulates causal independence in a general and operational way and summarizes the inferences drawn from it in non-relativistic quantum mechanics, classical relativistic point mechanics, quantum field theory, and classical field theory. Special attention is given to the open question of the relationship between local independence and commutativity in quantum field theory.Work performed under the auspices of the U.S. Atomic Energy Commission.  相似文献   

10.
A mathemetical framework for a realistic quantum probability theory is presented. The basic elements of this framework are measurements and amplitudes. Definitions of the various concepts are motivated by guidelines from the path integral formalism for quantum mechanics. The operational meaning of these concepts is discussed. Superpositions of amplitude functions are investigated and superselection sectors are shown to occur in a natural way. It is shown that this framework includes traditional nonrelativistic quantum mechanics as a special case. Proofs of most of the theorems will appear elsewhere.  相似文献   

11.
We develop the concept of quantum probability based on ideas of R. Feynman. The general guidelines of quantum probability are translated into rigorous mathematical definitions. We then compare the resulting framework with that of operational statistics. We discuss various relationship between measurements and define quantum stochastic processes. It is shown that quantum probability includes both conventional probability theory and traditional quantum mechanics. Discrete quantum systems, transition amplitudes, and discrete Feynman amplitudes are treated. We close with some examples that illustrate previously defined concepts.  相似文献   

12.
The probability pattern emerging in two-slit experiments is a typical quantum feature whose essential ingredients are examined by translating them into the spin- formalism. In view of the existence of extensions of quantum theory preserving some classical structure, we discuss how the two-slit probabilities behave under such extensions. We consider a generalization of the standard classical probability theory, to be called operational probability theory, that turns out to host the so called quantum probabilities.  相似文献   

13.
We propose some formulations of the notion of “operational independence” of two subsystems S 1,S 2 of a larger quantum system S and clarify their relation to other independence concepts in the literature. In addition, we indicate why the operational independence of quantum subsystems holds quite generally, both in nonrelativistic and relativistic quantum theory.  相似文献   

14.
We give a general formulation of the theory of optimal quantum measurements, based on Gudder's [8] convex structure approaches to axiomatic quantum mechanics, which includes the case of Holevo's formulation [14] and operational quantum mechanics [3]. Simple and general conditions for existence of Bayes optimal measurements are obtained by a method without operator valued measure techniques. For this purpose, a representation of convex prestructures and a characterization of a class of loss functions are obtained. Finally, an application of the results to Wald's theory of statistical decision functions is shown.  相似文献   

15.
How correlated are two quantum systems from the perspective of a third? We answer this by providing an optimal "quantum state redistribution" protocol for multipartite product sources. Specifically, given an arbitrary quantum state of three systems, where Alice holds two and Bob holds one, we identify the cost, in terms of quantum communication and entanglement, for Alice to give one of her parts to Bob. The communication cost gives the first known operational interpretation to quantum conditional mutual information. The optimal procedure is self-dual under time reversal and is perfectly composable. This generalizes known protocols such as the state merging and fully quantum Slepian-Wolf protocols, from which almost every known protocol in quantum Shannon theory can be derived.  相似文献   

16.
The operational axiomatization of quantum theory in previous works can be regarded as a set of six epistemological rules for falsifying propositions of the theory. In particular, the Purification postulate—the only one that is not shared with classical theory—allows falsification of random-sequences generators, a task classically unfeasible.  相似文献   

17.
The reconstruction of quantum physics has been connected with the interpretation of the quantum formalism, and has continued to be so with the recent deeper consideration of the relation of information to quantum states and processes. This recent form of reconstruction has mainly involved conceiving quantum theory on the basis of informational principles, providing new perspectives on physical correlations and entanglement that can be used to encode information. By contrast to the traditional, interpretational approach to the foundations of quantum mechanics, which attempts directly to establish the meaning of the elements of the theory and often touches on metaphysical issues, the newer, more purely reconstructive approach sometimes defers this task, focusing instead on the mathematical derivation of the theoretical apparatus from simple principles or axioms. In its most pure form, this sort of theory reconstruction is fundamentally the mathematical derivation of the elements of theory from explicitly presented, often operational principles involving a minimum of extra‐mathematical content. Here, a representative series of specifically information‐based treatments—from partial reconstructions that make connections with information to rigorous axiomatizations, including those involving the theories of generalized probability and abstract systems—is reviewed.  相似文献   

18.
A theory of the joint measurement of quantum mechanical observables is generalized in order to make it applicable to the measurement of the local observables of field theory. Subsequently, the property of local commutativity, which is usually introduced as a postulate, is derived by means of the theory of measurement from a requirement of mutual nondisturbance, which, for local observables performed at a spacelike distance from each other, is interpreted as a requirement of macrocausality. Alternative attempts at establishing a deductive relationship between relativistic causality and local commutativity are reviewed, but found wanting, either because of the assumption of an unwarranted objectivity of the object system (algebraic approach) or because of the use of a projection postulate (operational approach). Finally, the quantum mechanical nonobjectivity is related to certain features of nonlocality which are present in the formalism of quantum mechanics.  相似文献   

19.
Quantum logic introduced a paradigm shift in the axiomatization of quantum theory by looking directly at the structural relations between the closed subspaces of the Hilbert space of a system. The one dimensional closed subspaces correspond to testable properties of the system, forging an operational link between theory and experiment. Thus a property is called actual, if the corresponding test yields “yes” with certainty. We argue a truly operational definition should include a quantitative criterion that tells us when we ought to be satisfied that the test yields “yes” with certainty. This question becomes particularly pressing when we inquire how the usual definition can be extended to cover potential, rather than actual properties. We present a statistically operational candidate for such an extension and show that its representation automatically captures some essential Hilbert space structure. If it is the nature of observation that is responsible for the Hilbert space structure, then we should be able to give examples of theories with scope outside the domain of quantum theory, that employ its basic structure, and that describe the optimal extraction of information. We argue signal analysis is such an example. This work was supported by the Flemish Fund for Scientific Research (FWO) project G.0362.03N.  相似文献   

20.
The notion of informational completeness is formulated within the convex state (or operational) approach to statistical physical theories and employed to introduce a type of statistical metrics. Further, a criterion for a set of physical quantities to be informationally complete is proven. Some applications of this result are given within the algebraic and Hilbert space formulations of quantum theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号