首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A powder mixture of Al/ZrO2/H3BO3 system was mechanically milled under argon in a high-energy planetary mill at different speeds. The XRD and DSC analyses of the as-synthesized samples show that milling operation affects the mechanism, efficiency, and ignition temperature of combustion behavior of the system. XRD analysis of the as-milled samples shows that low-speed milling does not change the phases presented in the sample, while high-speed milling (350, 450 rpm) has led to the formation of new intermetallic phases. This confirms that some reactions between reactants have occurred during high-speed milling.  相似文献   

2.
Summary Reactive milling of Cu-hydroxycarbonate - powder aluminium mixture brings many complex chemical reactions such as decomposition, aluminothermic reduction and mechanical alloying resulting in the formation of nanometer size composites that contain intermetallic phases, -Cu9Al4 and -CuAl2, with aluminium oxide.  相似文献   

3.
The present study has investigated the complex mechanisms in the aluminum–titanium system with different percentages of titanium through a combination of thermal and X-ray analyses. Thermogravimetry, derivative thermogravimetric, X-ray diffraction, scanning electron microscope and transition electron microscope were used for characterization of the samples. Initially, different Al–Ti powder mixtures were produced by high-energy ball milling and after 30 h of milling the phases generated at different percentages of Ti were analyzed. The XRD results revealed that the intermetallic Al3Ti powder is obtained after a certain duration of milling. In addition, L12 to D023 phase transformation is possible with increase of the Ti percent. Analyses of the powder annealed at different temperatures yielded interesting results, including the effect of stearic acid as the surface control agent on phase transformations of the aluminum–titanium system and also the formation of unexpected phases such as Al4C3 and TiC. Moreover, ductile to brittle transition during phase transformations of the intermetallic Al3Ti powder was quite conspicuous, which could result in more homogeneity of the powders and the occurrence of more reactions in the system. For example, formation of D023-Al3Ti powder which is more brittle compared to L12 resulted in the exit of Al from among its layers, leading to the increase of the chances for Al reaction with the system impurities.  相似文献   

4.
A powder mixture of Al/TiO2/H3BO3 = 10/3/6 in molar ratio was used in this study to form the Al2O3–TiB2 ceramic composite via thermite reactions (combustion synthesis). As no combustion synthesis occurred for an unmilled sample in a furnace, the mixture was milled in a planetary ball-mill for various milling times, and the as-milled samples were in situ synthesized in the furnace at a heating rate of 10 °C/min. The differential scanning calorimetry (DSC) measurements were performed with the same heating rate on the unmilled and the as-milled samples to evaluate the influences of the milling on the mechanisms and efficiencies of reactions. Although no combustion synthesis occurred for the unmilled sample in the furnace, two exothermic peaks were detected in its DSC curve after the melting of the Al. For the as-milled samples, significant changes revealed in the DSC curves, suggest that the milling process before the combustion synthesis changed the mechanisms and efficiencies of reactions. In addition, the intensity and the temperature of the exothermic peaks in the DSC curves changed by increasing the milling time. According to the XRD analyses, by enhancing the milling time, the purity of the final products would increase, confirming that the efficiency of the reactions increased. Finally, the microstructures of the as-milled and as-synthesized samples were examined by a SEM, and it was shown that the morphology of the reactant powders was altered by increasing the milling time.  相似文献   

5.
Transformations of carbon dioxide catalyzed by the hydride form of [TiFe0.95Zr0.03Mo0.02]Hx, by the industrial Pt/Al2O3 catalyst, and by a mixture of the above materials were studied. Study of the thermal desorption of H2 showed the presence of two forms of absorbed hydrogen, namely, the weakly bound hydrogen, which is evolved from the intermetallic structure on heating to 430 °C under Ar, and the strongly bound hydrogen (SBH), which remains in the intermetallic compound at higher temperatures (up to 700 °C). In a carbon dioxide medium, the SBH enters into selective CO2 reduction to give CO at 350—430 °C and 10—12 atm. The selectivity of the formation of CO reaches 80—99% for conversion of CO2 between 50—70%, the SBH being consumed almost entirely for the reduction of CO2. In the presence of the mixed catalyst, conjugate reactions proceed efficiently; dehydrogenation of cyclohexane yields hydrogen, which is consumed for CO2 hydrogenation.  相似文献   

6.
The crystal structure of the subvalent nickel—lead sulfide, which has been described previously as Ni60Pb9S31, was established and the composition of this sulfide was refined based on powder X-ray diffraction data. The true Ni151.5Pb24S92 composition of this compound was confirmed by the EDX techniques. The temperature range of stability of this compound (490—578 °C) was refined by differential thermal analysis. In the search for analogs, the triangulation of the Ni—Pb—Se and Ni—Pb—Te systems at 540 °C was carried out for the first time. No new ternary phases were detected.  相似文献   

7.
In the present work, 0.25 wt%GNP-Ti composites were prepared through powder metallurgy route by adopting three types of mixing modes to investigate the extent of mixing on the mechanical and tribological properties. Dry ball milling, wet ball milling, and rotator mixing were independently employed to homogenize the composite constituents. Three types of composite powders obtained were subsequently sintered into composite pellets by cold compaction followed by vacuum sintering. Morphological investigation of composite powders performed by SEM revealed better homogenization of GNPs in Ti matrix for dry ball milled composite powder, whereas wet ball milled and rotator mixed composite powders showed aggregation and bundling of GNPs. Micro Vickers hardness of composites produced via dry ball milling is 4.56% and 15.7% higher than wet ball milled and rotator mixed samples, respectively. Wear test performed by pin-on-disk tribometer showed higher wear loss for wet ball milled and rotator mixed composites in comparison to dry ball milled.  相似文献   

8.
(Ni, Fe)3Al intermetallic compound was synthesized by mechanical alloying (MA) of Ni, Fe and Al elemental powder mixtures of composition Ni50Fe25Al25. Phase transformation and microstructure characteristics of the alloy powders were investigated by X-ray diffraction (XRD). The results show that mechanical alloying resulted in a Ni (Al, Fe) solid solution. By continued milling, this structure transformed to the disordered (Ni, Fe)3Al intermetallic compound. A thermodynamic model developed on the basis of extended theory of Miedema is used to calculate the Gibbs free-energy changes. Final product of MA is a phase having minimal Gibbs free energy compared with other competing phases in Ni–Fe–Al system. However in Ni–Fe–Al system, the most stable phase at all compositions is intermetallic compound (not amorphous phase or solid solution). The results of MA were compared with thermodynamic analysis and revealed the leading role of thermodynamic on the formation of MA product prediction.  相似文献   

9.
Summary The system of plasma sprayed Al2O3 on Ni substrates is investigated by means of AES/depth profiling. The influence of two process parameters — preoxidation procedure and spraying temperature — is examined. Rupture between substrate and ceramic layer occurs between a residual — or, in the case of excessive preoxidation, a superfluous — NiO layer on Ni, the thickness of the former depending on preoxidation conditions and the Al2O3 layer, the back side of which being partially covered with NiO. The thickness of this NiO layer increases up to about 1 m with the thickness of the initial NiO layer on the substrate, until this layer is about 1.3 m thick, and remains constant thereafter. The same dependence is observed for the width (0.1–1 m range) of the mixed oxide interface between the sprayed Al2O3 layer and the NiO layer below. These results represent the chemical contribution to adherence. Contrary to excessive preoxidation, an increase of the spraying temperature from 300°C to 500°C effects broader interfaces.This poster was awarded the First Prize in Poster Section C by the Deutscher Arbeitskreis für Spektroskopie (DASp)  相似文献   

10.
This paper reports on the use of Auger electron spectroscopy (AES)/ depth profile analysis for the investigation of plasma-sprayed coatings. Prior to spraying the St 37 substrates are heated to 300 °C or 500 °C for ceramic or metallic layers, respectively. Studies of the starting materials and of the interfaces are important if the adhesion mechanism is to be understood. Therefore the initial components—the unheated and heated substrates and the powder particles NiCrAl, Al2O3 and ZrO2-7.25Y2O3—are analyzed. Depth profiles obtained from two coatings St 37/NiCrAl and St 37/Al2O3 show the influence of plasmaspraying on substrate surfaces and sprayed particles. Plasma-spraying mainly causes a decrease of superficial carbon contamination for both coating layers. In the case of St 37/NiCrAl incorporation of carbon in the sprayed layer is observed. The whole layer is almost completely oxidized except for some areas where substrate and particle material are present. It is assumed that these areas are identical with so-called adherence zones.Dedicated to Professor Günther Tölg on the occasion of his 60th birthday  相似文献   

11.

A mixture of Ta and 25 mass% Cu elemental powders was subjected to mechanical alloying in a high-energy ball mill up to 60 h. The results are composite particles formed by nanocrystalline Cu and amorphous Ta phases. Thermal stability of amorphous was investigated by DSC. The XRD, FTIR and EDX analyses of Ta–25 mass% Cu powder milled for 60 h performed after DSC at 800 and 900 °C have revealed large amounts of Ta nitride and Ta oxides even though the milling process was done in Ar atmosphere. This is due to high reactivity of Ta fine particles with oxygen and nitrogen from air. During manipulations of the powder (taking samples from vials and its investigation), the adsorption phenomena on its surface occur, and both surface-adsorbed N2 and O2 are processed with powder and embedded in it. While heating of Ta–25% Cu milled powder in DSC, nitrogen and oxygen diffusion into tantalum is activated, and Ta2N and TaO2/Ta2O5 compound forms.

  相似文献   

12.
Magnesium aluminum silicate (MAS) glass samples with different concentrations of alumina (7.58 to 14.71 mol%) were prepared by melt and quench-technique. Total Mg content in the form of MgF2+MgO was kept constant at 25 mol%. MAS glass was converted into glass-ceramics by controlled heat treatment at around 950°C. Crystalline phases present in different samples were identified by powder X-ray diffraction technique. Dilatometry technique was used to measure the thermal expansion coefficient and glass transition temperature. Scanning electron microscopy (SEM) was employed to study the microstructure of the glass-ceramic sample. It is seen from X-ray diffraction studies that at low Al2O3 concentrations (up to 10.5 mol%) both MgSiO3 and fluorophlogopite phases are present and at higher Al2O3 concentrations of 12.3 and 14.7 mol%, fluorophlogopite and magnesium silicate (Mg2SiO4), respectively are found as major crystalline phases. The average thermal expansion co-efficient (avg) of the glass samples decreases systematically from 9.8 to 5.5·10–6 °C–1 and the glass transition temperature (T g) increases from 610.1 to 675°C with increase in alumina content. However, in glass-ceramic samples the avg varies in somewhat complex manner from 6.8 to 7.9·10–6 °C–1 with variation of Al2O3 content. This was thought to be due to the presence of different crystalline phases, their relative concentration and microstructure.Authors wish to thank Dr V. C. Sahni, Director Physics Group and Dr J. V. Yakhmi, Head TPPED, BARC for encouragement and support to the work. They would like to thank Dr S. K. Kulshreshtha for many useful discussions. Technical assistance from Shri B. B. Sawant, Mrs Shobha Manikandan, Mr Rakesh Kumar and Shri P. A. Wagh is gratefully acknowledged. One of authors (BIS) would like to thank BRNS-DAE for awarding him KSKRA fellowship.  相似文献   

13.
Three-dimensional nanocomposites based on ordered opal matrices (OMs) and metal nanoparticles were prepared by the reduction of salts and oxides of iron subgroup metals (M = Ni, Co, and Fe) and their binary and ternary mixtures with isopropanol in a supercritical state. The effect of the composition of the initial salts (nitrates or chlorides) on the phase composition of OM/M composites was determined. For a binary system of Ni and Co nitrates (1 : 1), the particles of a NiCo solid solution in a cubic modification were formed in an opal matrix after treatment in supercritical isopropanol. For the Ni-Fe and Co-Fe systems, the nanoparticles of solid solutions based on nickel or ??-, ??-cobalt metal and also oxides or an MFe2O4 phase with the spinel structure were formed in opal matrices with the use of iron trichloride. The nanoparticles of iron metal and Ni3Fe, NiFe, and CoFe intermetallic compounds with regular distributions of metal atoms were detected for the first time in addition to spinel phases upon the reduction of composites with Fe, Ni-Fe, and Co-Fe nitrates with supercritical isopropanol. The reduction of composites obtained by the thermal treatment of a ternary mixture of nickel and cobalt nitrates and iron chloride in supercritical isopropanol led to the formation of solid solution nanoparticles based on Ni, Co, and Fe with an fcc structure and an oxide phase with the spinel structure in the voids of opal matrices. In the composite based on an opal matrix and a ternary system of Ni-Co-Fe nitrates (1 : 1 : 1), the complete reduction of spinel phases to the intermetallic phases of Ni3Fe, NiFe, and CoFe was noted.  相似文献   

14.
The phase diagrams of the ternary system water—sodium alkylbenzene sulfonate (NaDBS)-hexanol and the quaternary system water—xylene—NADBS—hexanol have been established at three different temperatures, namely 25, 37, and 50°C. The different phases formed have been qualitatively examined using optical (phase contrast and polarizing) microscopy. The textures of the various liquid crystalline phases in the ternary system have been identified, by comparison with previous studies in the literature. Some of the liquid crystalline phases have been quantitatively assessed using low angle X-ray diffraction. The latter measurements were also used to determine the unit cell dimensions in the various phases studied. With the quaternary system, particular attention was paid to the transparent region which consisted of an L2 (inverse micellar) phase extending into another transparent region which has a blue “tinge” in some cases, namely the microemulsion (M) region. The amount of water solubilized in the L2 (reverse micelle) or M + L2 phase was calculated from the phase diagrams. With the ternary system the results showed a maximum in moles of water solubilized per mole total surfactant (NaDBS + hexanol) at a concentration of 0.3 mole surfactant, at an optimum molar ratio of n-hexanol to NaDBS of 4.5:1. This maximum was about twice with the quaternary system, when compared with that of the ternary system, indicating the importance of the role of xylene in solubilization of water by the surfactants. The present investigation has also shown that the extent of the microemulsion region is significantly reduced by increases of temperature when the NaDBS is lower than 15 wt%.  相似文献   

15.
The interaction of cerium with palladium and indium was studied, and the 773°C isothermal section of the Ce-Pd-In phase diagram was plotted using physicochemical methods: X-ray powder diffraction, single-crystal X-ray diffraction, and electron probe microanalysis. The existence of 12 ternary intermetallic phases in the title system was confirmed, and three new phases were discovered. Crystal structure was determined for seven intermetallic compounds. A single-crystal X-ray diffraction study of CePdIn was carried out for the first time. A high-temperature phase CePdIn4 was found, and its crystal structure was solved.  相似文献   

16.
The effect of milling on the aluminothermic reduction of niobium pentaoxide was investigated. Charges of Nb2O5 and Al (containing 5 % excess Al) were milled for different time (2, 5 and 10 h). XRD profile of milled samples indicated no phase formations during milling; only peak broadening were seen. Milled and unmilled charges were heated in a thermal analyser up to 1,400 °C. Products of milled charges showed formation of Nb, NbO and Al2O3; whereas unmilled hand mixed charges showed formations of Nb3Al along with Nb and Al2O3. The tendency of milled charges towards Nb formations without the presence of aluminides was explained from the increase in surface area of charges caused by particle reduction.  相似文献   

17.
This work investigates the uptake of impurities during processing of Si3N4 and describes an analytical scheme for detecting sources of contamination. For this purpose a process as simple and short as possible was chosen, using commercial starting materials with a high standard of purity and reproducibility. The uptake of non-metallic and metallic contaminants was investigated by choosing elements which were specific for individual processing steps. This was difficult in the determination of metallic impurities in a powder consisting of Si3N4 with Y2O3/Al2O3 additives, because the powder mixture and the sources of contamination (milling balls, attritor disk, wall materials) were similar in composition and the available analytical methods were not precise enough to detect the small increase in concentration that occurred. Therefore pure Si3N4 powders were milled in order to get an indication of the kind and concentration of impurity introduced by the individual milling materials and steps. These elements can then be used as monitor elements to trace sources of contamination and to optimize processing parameters. Experience with the processing of Si3N4 with Y2O3/Al2O3 additives by cyclic milling, spray drying, burn-out and isopressing are reported. Contamination by carbon is unavoidable. Its concentration during the process is relatively high, as it is added in the form of processing aids (deflocculants, binders), but temporary, as it can be completely burned out. Oxygen is predominantly taken up during milling. Good deflocculation reduces the milling time and thus limits the uptake of oxygen. As a consequence of these findings the processing parameters could be optimized. Thus the uptake of metallic impurities, e.g. Fe could be limited to 10 g/g and the uptake of oxygen was found to be less than 0.2 wt%.  相似文献   

18.
The lithium–aluminum–silver ternary system has been investigated and two new phases Li6.98Al4.15Ag0.87 and LiAlAg2 were characterized using both powder and single crystal X-ray diffraction techniques. These phases crystallize in the cubic system, space group (a=6.344(1), 6.3124(5) Å), they, respectively, display the Pearson's cF12- and cF16-type structural arrangements. Compared to Li2AlAg, the only phase in the system reported so far, the structure of Li6.98Al4.15Ag0.87 is disordered owing to atomic substitutions and contains a full site vacancy. Band structures and densities of states of Li6.98Al4.15Ag0.87, LiAlAg2 and Li2AlAg have been calculated by a first principle pseudopotential method using the plane-wave basis CASTEP package.  相似文献   

19.
Summary In a range of intermediate temperatures from 600 to 1000°C and in the presence of oxygen, numerous intermetallic phases show the phenomenon pest, an intergranular disintegration into small pieces. Thermo-gravimetric investigations and annealings in quartz ampoules have been performed, for annealing the oxygen pressures were established in the range 10–30 to 10–10 bar O2 using metal/oxide mixtures. The specimens after annealing were fractured in UHV and the intergranular fracture faces were analyzed by AES. The Auger peaks of Al are markedly different for the intermetallic phase and for Al2O3, therefore it can be distinguished if oxygen has diffused into grain boundaries and not yet reacted or if Al2O3 was formed. The fracture face of NbAl3 shows oxide precipitates near the surface and oxygen which had penetrated into the interior. Also in NiAl, Al2O3 was detected as well as oxygen penetrated into the grain boundaries. The pest obviously is a complex interplay of the processes: 1) penetration of oxygen through the outer oxide layer on the surface into grain boundaries of the intermetallic phase; 2) inward diffusion of oxygen along the grain boundaries into the interior of the intermetallic phase; 3) precipitation of Al2O3, beginning near the surface or (at low oxygen pressure) in the whole cross section, and cracking of the materials by the growth of Al2O3 into grain boundaries and cracks. Depending on the range of oxygen pressure different steps can be rate determining.  相似文献   

20.
Calcium phosphate-based bioceramics, mainly in the form of hydroxyapatite, Ca10(PO4)6(OH)2—HAP, is the main mineral constituent of teeth and bones with excellent biocompatibility with hard and muscle tissues. These materials exhibit several problems of handling and fabrication, which can be overcome by mixing them with a suitable binder. The dry milling process of fabrication of HAP presents the advantage that melting is not necessary and the powder obtained is nanocrystalline. The high efficiency of the dry milling process opens a new way to produce commercial amount of nanocrystalline HAP and others bioceramic. In this work dry mechanical alloying has been used to produce nanocrystalline powders of HAP using three different experimental procedures (HAPA: Ca(H2PO4)2 + Ca(OH)2; HAPB: Ca(H2PO4)2 + CaCO3; and HAPC: CaHPO4 + CaCO3). HAP was obtained after 5, 10 and 15 h of milling in the reactions HAPA and HAPB, but it is necessary 15 h of milling in the reaction HAPC to obtain HAP. In order to improve the mechanical properties of HAP calcium phosphate ceramics, with titanium (CaP-Ti) and zirconium (CaP-Zr), have been prepared by dry ball milling using two different experimental procedures: CaP-Ti1: Ca(H2PO4)2 + TiO2; CaP-Ti2: CaHPO4 + TiO2; and CaP-Zr1: Ca(H2PO4)2 + ZrO2, CaP-Zr2: CaHPO4 + ZrO2. The calcium titanium phosphate phase, CaTi4P6O24, was obtained in the reaction CaP-Ti1. In the reactions CaP-Ti2, CaP-Zr1 and CaP-Zr2, it was not observed the formation of any calcium phosphate phase even after 15 h of dry mechanical alloying. The milled HAP and the ceramics systems obtained were characterized by X-ray powder diffraction, infrared and Raman scattering spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号