首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
C.K. Hui  C.F. Ng 《Applied Acoustics》2008,69(11):1044-1062
This paper mainly investigates the effect of coupling resonance of floating slab and supporting short concrete box. The similarities and differences in vibration behaviors between long (30 m) and short (1.5 m) lengths of concrete box structures with the same cross-section were analyzed with finite element model (FEM). The results suggest that the major local modes for vibration and structure-borne sound radiation for long and short box structures are the same. A short concrete hollow box was constructed to verify the theoretical vibration results, and six combinations of floating slabs were installed on the box to identify the vibration and structure-borne sound control by experimental method. The resonance modes due to either concrete box or floating slab should degrade the vibration isolation performance of the floating system. There may be strong coupling between roll mode (rigid body rotation mode in the y-z plane) of the floating slab and local distortion mode of the short box structure and this can change the vibration resonance frequencies and amplify the vibration.  相似文献   

2.
This paper is concerned with the analysis of the dependence of low frequency impact sound transmission through floating floor systems on in situ matched resonances. The evidence for the floating floor matched resonances has been found previously considering laboratory and numerical tests for one concrete slab and floating floor with varying resilient layers. In the present paper, considering laboratory and field tests for concrete slabs and floating floors with different plan configurations, this evidence is strengthened as differences between laboratory and field measurements of the impact sound level were negligible for the bare concrete slab but not with the floating floor installed. These results were also confirmed numerically. The analysis indicates that the dependence of low frequency impact sound transmission through floating floor systems on in situ matched resonances should be considered in addition to the conventional single degree of freedom models in order to improve accuracy.  相似文献   

3.
This paper investigates the vibration isolation performance of floating floor and floating box structures to control rail vibration transmission. Simple theoretical and experimental methods are developed to analyze the effects of stiffener beam, mass and arrangement of isolator on the fundamental natural frequency of the flexural vibration of floating floor and box structure.The vibration reduction performances of floating floor and box structure are found to be degraded by flexural vibration of the floor or supporting stiffener beam. From the results of vibration measurements; stiffener beams increase the fundamental natural frequency of flexural vibration of floating floor and enhance vibration isolation. Also they can further alleviate the effect of flexural vibration using optimum isolator arrangement effectively. The proposed floating box design achieved a vibration reduction of 15-30 dB in frequency region of critical rail vibration (30-200 Hz).  相似文献   

4.
Ground-borne noise and vibration created by train operations is one of the major environmental problems faced by rail transit systems. In the past 10–20 years there have been a number of developments in the control and prediction of ground-borne noise and vibration although it is evident that further research is needed. In this paper the focus is on two methods of controlling the vibration radiated by the transit structure. First is the use of floating slab trackbeds, a method that has proven to be very effective at reducing vibration at frequencies above the resonance frequency of the floating slab system. Second is to modify the design of transit car bogies such that the wheel/rail forces are reduced. Although this method is still in the exploratory phase it has been shown that proper design of the bogie suspension can significantly reduce the levels of ground-borne noise and vibration.  相似文献   

5.
This paper presents a periodic approach to couple a track and a tunnel-soil system of different periodicity. The periodicity of the track and the tunnel-soil system is exploited using the Floquet transform to efficiently formulate the problem in the frequency-wavenumber domain as well as to limit the discretization effort to a reference cell. The track and the tunnel-soil system are modelled as two separate systems of different periodicity and are coupled in the frequency-wavenumber domain. A coupled periodic finite element-boundary element method is used to model the tunnel-soil system, while a periodic finite element model or an analytical approach is used to model the track.A general analytical formulation to compute the response of three-dimensional periodic media that are excited by moving loads is discussed. It is shown that the response due to moving loads on the track can be calculated from the transfer function of the track-tunnel-soil system and the axle loads.A methodology for computing the transfer functions of the coupled track-tunnel-soil system as well as the computation of dynamic forces accounting for the interaction between the moving vehicle and the periodic track are described. The model accounts for quasi-static forces as well as dynamic forces due to parametric excitation and unevenness excitation.The methodology has been used to assess the vibration isolation efficiency of continuous and discontinuous floating slab tracks. It is concluded that both continuous and discontinuous floating slab tracks have a similar efficiency in the frequency range well above the isolation frequency of the slabs, which is usually higher than the slab passage frequency. In case of discontinuous slab tracks, the parametric excitation is found to be important, which results in a poorer performance of the track at low frequencies.  相似文献   

6.
In this study, the vibration and acoustic resonance, and dominant frequency range of simple concrete box and viaduct are examined from the measurement results. A narrow band analysis—fast Fourier transform (FFT) method is used to analyze the measurement results and finite element method (FEM) is used to validate resonance frequencies for noise and vibration. The experiment of the concrete box structure is a preliminary study of analyzing resonance frequency radiated from the vibrating concrete structure since railway viaduct is a concrete box structure too. According to their noise and vibration spectra, it shows that the vibration resonance is more significant than the acoustics resonance.Based on the measurement results of the rail viaduct structure-borne noise and vibration, the relationship in terms of transfer function and coherence between noise and vibration are evaluated. They show that the dominant frequency range for noise and vibration of concrete viaduct is between 20 and 157 Hz, the resonance frequencies are 43 and 54 Hz and have significant tonal noise characteristics. The experimental results are in good agreement with the theoretical relationship between sound and vibration.  相似文献   

7.
The principal resonance frequency in the driving-point impedance of the human body decreases with increasing vibration magnitude—a nonlinear response. An understanding of the nonlinearities may advance understanding of the mechanisms controlling body movement and improve anthropodynamic modelling of responses to vibration at various magnitudes. This study investigated the effects of vibration magnitude and voluntary periodic muscle activity on the apparent mass resonance frequency using vertical random vibration in the frequency range 0.5-20 Hz. Each of 14 subjects was exposed to 14 combinations of two vibration magnitudes (0.25 and 2.0 m s−2 root-mean square (rms)) in seven sitting conditions: two without voluntary periodic movement (A: upright; B: upper-body tensed), and five with voluntary periodic movement (C: back-abdomen bending; D: folding-stretching arms from back to front; E: stretching arms from rest to front; F: folding arms from elbow; G: deep breathing). Three conditions with voluntary periodic movement significantly reduced the difference in resonance frequency at the two vibration magnitudes compared with the difference in a static sitting condition. Without voluntary periodic movement (condition A: upright), the median apparent mass resonance frequency was 5.47 Hz at the low vibration magnitude and 4.39 Hz at the high vibration magnitude. With voluntary periodic movement (C: back-abdomen bending), the resonance frequency was 4.69 Hz at the low vibration magnitude and 4.59 Hz at the high vibration magnitude. It is concluded that back muscles, or other muscles or tissues in the upper body, influence biodynamic responses of the human body to vibration and that voluntary muscular activity or involuntary movement of these parts can alter their equivalent stiffness.  相似文献   

8.
In the European High-Speed Train Network the infrastructure of the North-South connection in Antwerp needs significant modifications. For the section between Berchem and Antwerp Central Station the existing track on the high level embankment will be incorporated into concrete structures providing a three level track access to the station. For the section between Antwerp Central Station and Dam two drilled tunnels are planned providing the station with pass-through facilities instead of being an “end” station as at present. The paper focuses on the methods of practical research and the resulting measures regarding the impact of sound and vibration on the environment.An essential part of this study is the impact of the planned construction of a double railway tunnel underneath the city of Antwerp. At certain locations, the distance between the foundations of the houses and the top of the tunnel is only 4 m. The study considers the projected vibration levels on the rail, the tunnel invert, building foundations and upper floors of the buildings. Also the ground-borne noise is evaluated. The study identifies the measures necessary at the rail mounting level. As a result, a floating slab has been proposed and the effects on the environment are estimated.  相似文献   

9.
The biodynamic responses of the seated human body to whole-body vibration vary considerably between people, but the reasons for the variability are not well understood. This study was designed to determine how the physical characteristics of people affect their apparent mass and whether inter-subject variability is influenced by the magnitude of vibration and the support of a seat backrest. The vertical apparent masses of 80 seated adults (41 males and 39 females aged 18-65) were measured at frequencies between 0.6 and 20 Hz with four backrest conditions (no backrest, upright rigid backrest, reclined rigid backrest, reclined foam backrest) and with three magnitudes of random vibration (0.5, 1.0 and 1.5 m s-2 rms). Relationships between subject physical characteristics (age, gender, weight, and anthropometry) and subject apparent mass were investigated with multiple regression models. The strongest predictor of the modulus of the vertical apparent mass at 0.6 Hz, at resonance, and at 12 Hz was body weight, with other factors having only a marginal effect. After correction for other variables, the principal resonance frequency was most consistently associated with age and body mass index. As age increased from 18 to 65 years, the resonance frequency increased by up to 1.7 Hz, and when the body mass index was increased from 18 to 34 kg m−2 the resonance frequency decreased by up to 1.7 Hz. These changes were greater than the 0.9-Hz increase in resonance frequency between sitting without a backrest and sitting with a reclined rigid backrest, and greater than the 1.0-Hz reduction in resonance frequency when the magnitude of vibration increased from 0.5 to 1.5 m s−2 rms. It is concluded that the effects of age, body mass index, posture, vibration magnitude, and weight should be taken into account when defining the vertical apparent mass of the seated human body.  相似文献   

10.
Air-coupled ultrasound stimulated optical vibrometry is proposed to generate and detect the resonances of a rubber tube in air. Amplitude-modulated (AM) focused ultrasound radiation force from a broadband air-coupled ultrasound transducer with center frequency of 500 kHz is used to generate a low frequency vibration in the tube. The resonances of several modes of the tube are measured with a laser vibrometer of 633 nm wavelength. A wave propagation approach is used to calculate the resonances of the tube from its known material properties. Theoretical and experimental resonance frequencies agree within 5%. This method may be useful in measuring the in vitro elastic properties of arteries from the resonance measurements in air. It may also be helpful to better understand the coupling effects of the surrounding tissue and interior blood on the vessel wall by measuring the resonance of the vessel in vitro and in vivo.  相似文献   

11.
孙红灵 《声学学报》2016,41(2):227-235
系统研究了基础弹性对单层隔振系统、双层隔振系统及浮筏隔振系统隔振性能的影响。分析了不同隔振系统与不同弹性基础间的振动耦合特性,讨论了不同隔振系统的振级落差和力传递率特性,给出了振级落差和力传递率的简化计算方法。针对不同隔振系统的有源隔振问题,比较了不同作动器安装方式所需的控制力。研究表明,对于所有隔振系统,增加基础的刚度和阻尼有利于提高振级落差和力传递率;对于浮筏隔振系统,增加筏架的刚度和阻尼有利于提高隔振性能和减少有源隔振所需的控制力。   相似文献   

12.
Within the fourth RTD Framework Programme, the European Union has supported a research project dealing with the improvement of railway noise (emission) measurement methodologies. This project was called MetaRail and proposed a number of procedures and methods to decrease systematic measurement errors and to increase reproducibility. In 1999 the Austrian Federal Railways installed 1000 m of test track to explore the long-term behaviour of three different ballast track systems. This test included track stability, rail forces and ballast forces, as well as vibration transmission and noise emission. The noise study was carried out using the experience and methods developed within MetaRail. This includes rail roughness measurements as well as measurements of vertical railhead, sleeper and ballast vibration in parallel with the noise emission measurement with a single microphone at a distance of 7.5 m from the track. Using a test train with block- and disc-braked vehicles helped to control operational conditions and indicated the influence of different wheel roughness.It has been shown that the parallel recording of several vibration signals together with the noise signal makes it possible to evaluate the contributions of car body, sleeper, track and wheel sources to the overall noise emission. It must be stressed that this method is not focused as is a microphone-array. However, this methodology is far easier to apply and thus cheaper. Within this study, noise emission was allocated to the different elements to answer questions such as whether the sleeper eigenfrequency is transmitted into the rail.  相似文献   

13.
This paper presents a study of how different vibration modes contribute to the dynamics of an inclined cable that is parametrically excited close to a 2:1 internal resonance. The behaviour of inclined cables is important for design and analysis of cable-stayed bridges. In this work the cable vibrations are modelled by a four-mode model. This type of model has been used previously to study the onset of cable sway motion caused by internal resonances which occur due to the nonlinear modal coupling terms. A bifurcation study is carried out with numerical continuation techniques applied to the scaled and averaged modal equations. As part of this analysis, the amplitudes of the cable vibration response to support inputs is computed. These theoretical results are compared with experimental measurements taken from a 5.4 m long inclined cable with a vertical support input at the lower end. In general this comparison shows a very high level of agreement.  相似文献   

14.
Influence of the elasticity of the base on vibration isolation performances of single layer, double layer and floating raft vibration isolation systems is investigated systematically.Characteristics of vibration coupling between different vibration isolation systems and different elastic bases are analyzed. Moreover the characteristics of vibration acceleration level difference and force transmissibility of different vibration isolation systems are discussed and their simplified expressions are given. In addition the required control forces of active vibration isolation under different installations of actuators for different vibration isolation systems are compared.The results show that for all vibration isolation systems, the addition of the stiffness and damping of the base can enhance their vibration acceleration level difference and force transmissibility.Moreover for floating raft vibration isolation system, the addition of the stiffness and damping of the raft can enhance its vibration isolation performance and reduce the control force required by active vibration isolation.  相似文献   

15.
An analysis is presented of the noise problem produced when the application of standard acoustic treatment to a roof-mounted diesel generator failed to meet the design criterion. The problem was diagnosed as excessive vibration reaching the building due to the excitation of a resonance of the supporting structure. The resonance responsible was identified as a flexural mode of the partial floating floor installed below the generator set in order to provide a high transmission loss acoustic barrier. A solution to the problem was provided by converting the existing vibration isolation into a compound system. The reasons for the failure of the existing system are analysed. A simple theory is developed which illustrates that the ratio of machine mass to floating floor mass is the important parameter determining the severity of excitation of floating floor resonance. It is concluded that machines can be safely mounted via vibration isolators onto continuous floating floors provided they ahve a low mass compared with the floating floor mass and are provided with a low mounted resonant frequency compared with the floating floor resonant frequency.  相似文献   

16.
Seated human subjects have been exposed to vertical whole-body vibration so as to investigate the non-linearity in their biodynamic responses and quantify the response in directions other than the direction of excitation. Twelve males were exposed to random vertical vibration in the frequency range 0.25-25 Hz at four vibration magnitudes (0.125, 0.25, 0.625, and 1.25 m s−2 r.m.s.). The subjects sat in four sitting postures having varying foot heights so as to produce differing thigh contact with the seat (feet hanging, feet supported with maximum thigh contact, feet supported with average thigh contact, and feet supported with minimum thigh contact). Forces were measured in the vertical, fore-and-aft, and lateral directions on the seat and in the vertical direction at the footrest.The characteristic non-linear response of the human body with reducing resonance frequency at increasing vibration magnitudes was seen in all postures, but to a lesser extent with minimum thigh contact. Appreciable forces in the fore-and-aft direction also showed non-linearity, while forces in the lateral direction were low and showed no consistent trend. Forces at the feet were non-linear with a multi-resonant behaviour and were affected by the position of the legs.The decreased non-linearity with the minimum thigh contact posture suggests the tissues of the buttocks affect the non-linearity of the body more than the tissues of the thighs. The forces in the fore-and-aft direction are consistent with the body moving in two directions when exposed to vertical vibration. The non-linear behaviour of the body, and the considerable forces in the fore-aft direction should be taken into account when optimizing vibration isolation devices.  相似文献   

17.
This paper designs and fabricates a vibration isolation model for improving vibration isolation effectiveness of the vehicle seat under low excitation frequencies. The feature of the proposed system is to use two symmetric negative stiffness structures (NSS) in parallel to a positive stiffness structure. Here, theoretical analysis of the proposed system is clearly presented. Then, the design procedure is derived so that the resonance peak of frequency-response curve drifts to the left, the load support capacity of the system is maintained, the total size of the system is reduced for easy practical application and especially, the bending of the frequency-response curve is minimized. Next the dynamic equation of the proposed system is set up. Then, the harmonic balance (HB) method is employed to seek the characteristic of the motion transmissibility of the proposed system at the steady state for each of the excitation frequency. From this characteristic, the curves of the motion transmission are predicted according to the various values of the configurative parameters of the system. Then, the time responses to the sinusoidal, multi frequency and random excitations are also investigated by simulation and experiment. In addition, the isolation performance comparison between the system with NSS and system without NSS is realized. The simulation results reveal that the proposed system has larger frequency region of isolation than that of the system without NSS. The experimental results confirm also that with a random excitation mainly spreading from 0.1 to 10 Hz, the isolation performance of the system with NSS is greatly improved, where the RMS values of the mass displacement may be reduced to 67.2%, whereas the isolation performance of the system without NSS is bad. Besides, the stability of the steady-state response is also studied. Finally, some conclusions are given.  相似文献   

18.
以典型的双稳态系统——屈曲梁结构为例,基于等效模型,结合解析、数值和实验手段,研究了双稳态结构中的1/2次谐波共振特性、演化过程、参数调节规律及其对隔振特性的影响.研究发现,当非线性刚度系数或激励幅值增加到一定程度时,系统会在一定带宽下产生显著的1/2次谐波共振;随着激励幅值增加,阻尼系统的1/2次谐波遵循“产生-增强-衰退-消失”的过程,该过程对峰值频率和峰值传递率有重要影响;适当提高非线性强度能有效改善双稳态结构隔振特性.针对双稳态屈曲梁结构开展的实验验证了1/2次谐波特性和隔振特性变化规律.  相似文献   

19.
A new theoretical model considering the refraction of the incident light beam by the fibre is suggested to determine the refractive index profile of bent optical fibres. This new model (slabs model) considering the cross section of the bent optical fibre consists of large number of slabs. The slabs model bases on the refraction of the incident beam by the fibre. The refractive index profile of the optical fibre cladding before bending obtained using the automated Fizeau interferometer with the aid of suggested model is compared with other models such as, the homogenous model and the multilayer model to verify the ability of this slab model. The refractive index profile of the bent optical fibre cladding is investigated using this suggested model. In addition, the new model is used to obtain the induced birefringence and the guiding parameters. The bending radius is recommended to be greater than 7.1 mm for the used optical fibre. The consideration of the refraction increases the accuracy of the results.  相似文献   

20.
Prediction of vibrations induced by underground railway traffic in Beijing   总被引:4,自引:0,他引:4  
This paper examines the problem of subway induced vibrations on line 4 of Beijing metro, which is currently under construction and is planned to pass in close proximity of the Physics Laboratory of Beijing University. The laboratory has a lot of equipment that is very sensitive to traffic induced vibrations and future operation of metro line 4 is a matter of concern. Hence, it is important to study the influence of subway induced vibrations inside the laboratory and to propose a viable solution to mitigate the vibrations. In this paper, the tunnel north of Chengfulu station is modelled using a coupled periodic FE-BE model and the free-field response due to moving trains is predicted. In addition, vibration measurements have been performed on the site of the Physics Laboratory to estimate the existing vibration levels due to road traffic. The predicted and measured vibrations are superimposed to assess the vibrations due to the combined effect of road and railway traffic in the vicinity of the Physics Laboratory. Apart from the numerical investigations, vibration measurements have also been performed on a similar site at line 1 of Beijing metro to substantiate the estimated results on metro line 4. Finally, it is studied how the vibrations can be controlled using a floating slab track, which is widely used as an effective measure of vibration isolation in tunnels. The efficiency of a 7.9 Hz floating slab track as a vibration countermeasure is assessed in this paper. This study demonstrates the applicability of the numerical model for the relevant assessment of subway induced vibrations and its use to study the performance of different track structures in the tunnel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号