首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
New block copolymers Polystyrene‐b‐poly (2,2,2‐trifluoroethyl acrylate)‐b‐Polystyrene (PS‐PTFEA‐PS) with controlled molecular weight (Mn=5000‐11000 g?mol?1) and narrow molecular weight distribution (Mw/Mn=1.13‐1.17) were synthesized via RAFT polymerization. The molecular structure and component of PS‐PTFEA‐PS block copolymers were characterized through 1H NMR, 19F NMR, GPC, FT‐IR and elemental analysis. The porous films of such copolymers with average pore size of 0.80‐1.34 μm and good regularity were fabricated via a static breath‐figure (BF) process. The effects of solvent, temperature, and polymer concentration on the surface morphology of such film were investigated. In addition, microstructured spheres and fibers of such block copolymers were fabricated by electrospinning process and observed by scanning electron microscopy (SEM). Furthermore, the hydrophobicity of porous films, spheres, and fibers was investigated. The porous film showed a good hydrophobicity with the water‐droplet contact angles of 129°, and the fibers showed higher hydrophobicity with the water‐droplet contact angles of 142°. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 678–685  相似文献   

2.
The design and synthesis of well‐defined polymethylene‐b‐polystyrene (PM‐b‐PS, Mn = 1.3 × 104–3.0 × 104 g/mol; Mw/Mn (GPC) = 1.08–1.18) diblock copolymers by the combination of living polymerization of ylides and atom transfer radical polymerization (ATRP) was successfully achieved. The 1H NMR spectrum and GPC traces of PM‐b‐PS indicated the successful extension of PS segment on the PM macroinitiator. The micellization behavior of such diblock copolymers in tetrahydrofuran were characterized by dynamic light scattering (DLS) and atomic force microscopy (AFM) techniques. The average aggregate sizes of PM‐b‐PS diblock copolymers with the same length of PM segment in tetrahydrofuran solution (1.0 mg mL?1) increases from 104.2 nm to 167.7 nm when the molecular weight of PS segment increases. The spherical precipitated aggregates of PM‐b‐PS diblock copolymers with an average diameter of 600 nm were observed by AFM. Honeycomb porous films with the average diameter of 3.0 μm and 6.0 μm, respectively, were successfully fabricated using the solution of PM‐b‐PS diblock copolymers in carbon disulfide via the breath‐figure (BF) method under a static humid condition. The cross‐sections of low density polyethylene (LDPE)/polystyrene (PS)/PM‐b‐PS and LDPE/polycarbonate (PC)/PM‐b‐PS blends were observed by scanning electron microscope and reveal that the PM‐b‐PS diblock copolymers are effective compatilizers for LDPE/PS and LDPE/PC blends. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1894–1900, 2010  相似文献   

3.
Cationic emulsions of triblock copolymer particles comprising a poly(n‐butyl acrylate) (PnBA) central block and polystyrene (PS) outer blocks were synthesized by activator generated by electron transfer (AGET) atom transfer radical polymerization (ATRP). Difunctional ATRP initiator, ethylene bis(2‐bromoisobutyrate) (EBBiB), was used as initiator to synthesize the ABA type poly(styrene‐bn‐butyl acrylate‐b‐styrene) (PS‐PnBA‐PS) triblock copolymer. The effects of ligand and cationic surfactant on polymerizations were also discussed. Gel permeation chromatography (GPC) was used to characterize the molecular weight (Mn) and molecular weight distribution (MWD) of the resultant triblock copolymers. Particle size and particle size distribution of resulted latexes were characterized by dynamic light scattering (DLS). The resultant latexes showed good colloidal stability with average particle size around 100–300 nm in diameter. Glass transition temperature (Tg) of copolymers was studied by differential scanning calorimetry (DSC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 611–620  相似文献   

4.
Mixed micelles of polystyrene‐b‐poly(N‐isopropylacrylamide) (PS‐b‐PNIPAM) and two polystyrene‐b‐poly(ethylene oxide) diblock copolymers (PS‐b‐PEO) with different chain lengths of polystyrene in aqueous solution were prepared by adding the tetrahydrofuran solutions dropwise into an excess of water. The formation and stabilization of the resultant mixed micelles were characterized by using a combination of static and dynamic light scattering. Increasing the initial concentration of PS‐b‐PEO in THF led to a decrease in the size and the weight average molar mass (〈Mw〉) of the mixed micelles when the initial concentration of PS‐b‐ PNIPAM was kept as 1 × 10?3 g/mL. The PS‐b‐PEO with shorter PS block has a more pronounced effect on the change of the size and 〈Mw〉 than that with longer PS block. The number of PS‐b‐PNIPAM in each mixed micelle decreased with the addition of PS‐b‐PEO. The average hydrodynamic radius 〈Rh〉 and average radius of gyration 〈Rg〉 of pure PS‐b‐PNIPAM and mixed micelles gradually decreased with the increase in the temperature. Both the pure micelles and mixed micelles were stable in the temperature range of 18 °C–39 °C. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1168–1174, 2010  相似文献   

5.
A series of well‐defined graft copolymers with a polyallene‐based backbone and polystyrene side chains were synthesized by the combination of living coordination polymerization of 6‐methyl‐1,2‐heptadien‐4‐ol and atom transfer radical polymerization (ATRP) of styrene. Poly(alcohol) with polyallene repeating units were prepared via 6‐methyl‐1,2‐heptadien‐4‐ol by living coordination polymerization initiated by [(η3‐allyl)NiOCOCF3]2 firstly, followed by transforming the pendant hydroxyl groups into halogen‐containing ATRP initiation groups. Grafting‐from route was employed in the following step for the synthesis of the well‐defined graft copolymer: polystyrene was grafted to the backbone via ATRP of styrene. The cleaved polystyrene side chains show a narrow molecular weight distribution (Mw/Mn = 1.06). This kind of graft copolymer is the first example of graft copolymer via allene derivative and styrenic monomer. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5509–5517, 2007  相似文献   

6.
A series of new well‐defined amphiphilic graft copolymers containing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly(ethylene oxide) side chains were reported. Reversible addition‐fragmentation chain transfer homopolymerization of tert‐butyl 2‐((2‐bromopropanoyloxy)methyl)acrylate was first performed to afford a well‐defined backbone with a narrow molecular weight distribution (Mw/Mn = 1.07). The target poly(tert‐butyl acrylate)‐g‐poly(ethylene oxide) (PtBA‐g‐PEO) graft copolymers with low polydispersities (Mw/Mn = 1.18–1.26) were then synthesized by atom transfer nitroxide radical coupling or single electron transfer‐nitroxide radical coupling reaction using CuBr(Cu)/PMDETA as catalytic system. Fluorescence probe technique was employed to determine the critical micelle concentrations (cmc) of the obtained amphiphilic graft copolymers in aqueous media. Furthermore, PAA‐g‐PEO graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA backbone while PEO side chains kept inert. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Well‐defined polymethylene‐block‐polystyrene (PM‐b‐PS) diblock copolymers were synthesized via a combination of polyhomologation of ylides and reversible addition‐fragmentation chain‐transfer (RAFT) polymerization of styrene. Trithiocarbonate‐terminated polymethylenes (PM‐TTCB) (Mn = 1400 g mol?1; Mw/Mn = 1.09 and Mn = 2100 g mol?1; Mw/Mn = 1.20) were obtained via an esterification of S?1‐dodecyl‐S′‐(α,α′‐dimethyl‐α″‐acetate) trithiocarbonate with hydroxyl‐terminated polymethylene synthesized via polyhomologation of ylides followed by oxidation. Then, a series of PM‐b‐PS (Mn = 5500–34,000 g mol?1; Mw/Mn = 1.12–1.25) diblock copolymers were obtained by RAFT polymerization of styrene using PM‐TTCB as a macromolecular chain‐transfer agent. The chain structures of all the polymers were characterized by proton nuclear magnetic resonance (1H NMR), gel permeation chromatography, and Fourier transform infrared spectroscopy. The thiocarbonylthio end‐group of PM‐b‐PS was transformed into thiol group by aminolysis and confirmed by UV–vis spectroscopy. In addition, microfibers and microspheres of such diblock copolymers were fabricated by electrospinning process and observed by scanning electron microscopy (SEM). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2892–2899  相似文献   

8.
A technique is described for the preparation of arborescent graft copolymers containing poly(tert‐butyl methacrylate) (PtBMA) segments. For this purpose, tert‐butyl methacrylate is first polymerized with 1,1‐diphenyl‐2‐methylpentyllithium in tetrahydrofuran. The graft copolymers are obtained by addition of a solution of a bromomethylated polystyrene substrate to the living PtBMA macroanion solution. Copolymers incorporating either short (Mw ≈ 5000) or long (Mw ≈ 30,000) PtBMA side chains were prepared by grafting onto linear, comb‐branched (G0), G1, and G2 bromomethylated arborescent polystyrenes. Branching functionalities ranging from 9 to 4500 and molecular weights ranging from 8.8 × 104 to 6.3 × 107 were obtained for the copolymers, while maintaining a low apparent polydispersity index (Mw/Mn ≈ 1.14–1.25). Arborescent polystyrene‐graft‐poly(methacrylic acid) (PMAA) copolymers were obtained by hydrolysis of the tert‐butyl methacrylate units. Dynamic light scattering measurements showed that the arborescent PMAA copolymers are more expanded than their linear PMAA analogues when neutralized with NaOH. This effect is attributed to the higher charge density in the branched arborescent copolymer structures. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2335–2346, 2008  相似文献   

9.
Blends of linear low‐density polyethylene (LLDPE) with polystyrene (PS) and blends of LLDPE with high‐impact polystyrene (HIPS) were prepared through a reactive extrusion method. For increased compatibility of the two blending components, a Lewis acid catalyst, aluminum chloride (AlCl3), was adopted to initiate the Friedel–Crafts alkylation reaction between the blending components. Spectra data from Raman spectra of the LLDPE/PS/AlCl3 blends extracted with tetrahydrofuran verified that LLDPE segments were grafted to the para position of the benzene rings of PS, and this confirmed the graft structure of the Friedel–Crafts reaction between the polyolefin and PS. Because the in situ generated LLDPE‐g‐PS and LLDPE‐g‐HIPS copolymers acted as compatibilizers in the relative blending systems, the mechanical properties of the LLDPE/PS and LLDPE/HIPS blending systems were greatly improved. For example, after compatibilization, the Izod impact strength of an LLDPE/PS blend (80/20 w/w) was increased from 88.5 to 401.6 J/m, and its elongation at break increased from 370 to 790%. For an LLDPE/HIPS (60/40 w/w) blend, its Charpy impact strength was increased from 284.2 to 495.8 kJ/m2. Scanning electron microscopy micrographs showed that the size of the domains decreased from 4–5 to less than 1 μm, depending on the content of added AlCl3. The crystallization behavior of the LLDPE/PS blend was investigated with differential scanning calorimetry. Fractionated crystallization phenomena were noticed because of the reduction in the size of the LLDPE droplets. The melt‐flow rate of the blending system depended on the competition of the grafting reaction of LLDPE with PS and the degradation of the blending components. The degradation of PS only happened during the alkylation reaction between LLDPE and PS. Gel permeation chromatography showed that the alkylation reaction increased the molecular weight of the blend polymer. The low molecular weight part disappeared with reactive blending. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1837–1849, 2003  相似文献   

10.
Anthracene‐functionalized oxanorbornene monomer and oxanorbornenyl polystyrene (PS) with ω‐anthracene end‐functionalized macromonomer were first polymerized via ring‐opening metathesis polymerization using the first‐generation Grubbs' catalyst in dichloromethane at room temperature and then clicked with maleimide end‐functionalized polymers, poly(ethylene glycol) (PEG)‐MI, poly(methyl methacrylate) (PMMA)‐MI, and poly(tert‐butyl acrylate) (PtBA)‐MI in a Diels–Alder reaction in toluene at 120 °C to create corresponding graft copolymers, poly(oxanorbornene)‐g‐PEG, poly(oxanorbornene)‐g‐PMMA, and graft block copolymers, poly(oxanorbornene)‐g‐(PS‐b‐PEG), poly(oxanorbornene)‐g‐(PS‐b‐PMMA), and poly(oxanorbornene)‐g‐(PS‐b‐PtBA), respectively. Diels–Alder click reaction efficiency for graft copolymerization was monitored by UV–vis spectroscopy. The dn/dc values of graft copolymers and graft block copolymers were experimentally obtained using a triple detection gel permeation chromatography and subsequently introduced to the software so as to give molecular weights, intrinsic viscosity ([η]) and hydrodynamic radius (Rh) values. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

11.
We prepared two block copolymers 1 and 2 consisting of a third‐generation dendron with poly(ethylene oxide) (PEO) peripheries and a linear polystyrene (PS) coil. The PS molecular weights were 2000 g/mol and 8000 g/mol for 1 and 2 , respectively. The differential scanning calorimetry (DSC) data indicated that neither of the block copolymers showed glass transition, implying that there was no microphase separation between the PEO and PS blocks. However, upon doping the block copolymers with lithium triflate (lithium concentration per ethylene oxide unit = 0.2), two distinct glass transitions were seen, corresponding to the salt‐doped PEO and PS blocks, respectively. The morphological analysis using small angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM) demonstrated that a hexagonal columnar morphology was induced in salt‐doped sample 1‐Li+ , whereas the other sample ( 2‐Li+ ) with a longer PS coil revealed a lamellar structure. In particular, in the SAXS data of 2‐Li+ , an abrupt reduction in the lamellar thickness was observed near the PS glass transition temperature (Tg), in contrast to the SAXS data for 1‐Li+ . This reduction implies that there is a lateral expansion of the molecular section in the lamellar structure, which can be interpreted by the conformational energy stabilization of the long PS coil above Tg. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2372–2376, 2010  相似文献   

12.
A series of well‐defined amphiphilic star graft copolymers consisting of hydrophilic poly(acrylic acid) backbone and hydrophobic poly(propylene oxide) side chains were synthesized by the sequential reversible addition‐fragmentation chain transfer (RAFT) polymerization and atom transfer nitroxide radical coupling (ATNRC) or single electron transfer‐nitroxide radical coupling (SET‐NRC) reaction followed by the selective hydrolysis of poly(tert‐butyl acrylate) backbone. A Br‐containing acrylate monomer, tert‐butyl 2‐((2‐bromopropanoyloxy)methyl)acrylate, was first homopolymerized via RAFT polymerization using a new star‐like chain‐transfer agent with four arms in a controlled way to give a well‐defined star‐like backbone with a narrow molecular weight distribution (Mw/Mn = 1.23). The grafting‐onto strategy was used to synthesize the well‐defined PtBA‐g‐PPO star graft copolymers with narrow molecular weight distributions (Mw/Mn = 1.14–1.25) via ATNRC or SET‐NRC reaction between the Br‐containing PtBA‐based star‐like backbone and poly(propylene oxide) with 2,2,6,6‐tetramethylpiperidine‐1‐oxyl end group using CuBr/PMDETA or Cu/PMDETA as catalytic system. PAA‐g‐PPO amphiphilic star graft copolymers were obtained by the selective acidic hydrolysis of star‐like PtBA‐based backbone in acidic environment without affecting the side chains. The critical micelle concentrations in aqueous media and brine were determined by the fluorescence probe technique. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2084–2097, 2010  相似文献   

13.
A series of polyallene‐based well‐defined amphiphilic graft copolymers, poly(6‐methyl‐1,2‐heptadiene‐4‐ol)‐g‐poly(2‐(diethylamino)ethyl methacrylate) (PMHDO‐g‐PDEAEMA), was synthesized through the grafting‐from technique. First, double‐bond‐containing PMHDO backbone bearing pendant hydroxyls was prepared via [(η3‐allyl)NiOCOCF3]2‐initiated living coordination polymerization of 6‐methyl‐1,2‐heptadiene‐4‐ol (MHDO). The pendant hydroxyls in the homopolymer were then reacted with 2‐chloropropionyl chloride to give PMHDO‐Cl macroinitiator. Finally, hydrophilic PDEAEMA side chains were formed by single electron transfer‐living radical polymerization (SET‐LRP) of 2‐(diethylamino)ethyl methacrylate (DEAEMA) in THF/H2O initiated by the macroinitiator using CuCl/Me6TREN as catalytic system to afford PMHDO‐g‐PDEAEMA graft copolymers. The narrow molecular weight distributions (Mw/Mn ≤ 1.35) and kinetics experiment showed the controllability of SET‐LRP graft copolymerization of DEAEMA. The critical micelle concentration (cmc) of PMHDO‐g‐PDEAEMA amphiphilic graft copolymer in aqueous media was determined by fluorescence probe technique and the relationships between cmc and pH or salinity were also investigated. Micellar morphologies were preliminarily explored using transmission electron microscopy. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
Poly(ethylene‐g‐styrene) and poly(ethylene‐g‐methyl methacrylate) graft copolymers were prepared by atom transfer radical polymerization (ATRP). Commercially available poly(ethylene‐co‐glycidyl methacrylate) was converted into ATRP macroinitiators by reaction with chloroacetic acid and 2‐bromoisobutyric acid, respectively, and the pendant‐functionalized polyolefins were used to initiate the ATRP of styrene and methyl methacrylate. In both cases, incorporation of the vinyl monomer into the graft copolymer increased with extent of the reaction. The controlled growth of the side chains was proved in the case of poly(ethylene‐g‐styrene) by the linear increase of molecular weight with conversion and low polydispersity (Mw /Mn < 1.4) of the cleaved polystyrene grafts. Both macroinitiators and graft copolymers were characterized by 1H NMR and differential scanning calorimetry. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2440–2448, 2000  相似文献   

15.
A new synthetic methodology is developed for preparing graft copolymers via RAFT polymerization method by the “R group approach” onto styrenic polymers. In this approach, latent sites of the styrenic polymer was brominated first and then converted into macro‐RAFT agents with pyrazole and thio dodecyl as the Z groups. This was used to synthesize graft copolymer such as polystyrene‐graft‐polymethyl methacrylate (PS‐g‐PMMA), polystyrene‐graft‐poly(isobornyl acrylate), polystyrene‐graft‐poly[2‐(acetoacetoxy)ethyl methacrylate] (PS‐g‐PAEMA), and poly(para‐methoxystyrene)‐graft‐polystyrene (P(p‐MS)‐g‐PS). The polymers are characterized by gel permeation chromatography, 1H NMR, IR, and atomic force microscopy (AFM). The morphology of PS‐g‐PMMA in THF was investigated using AFM and island‐like features were noticed. The AFM studies of the PS‐g‐PAEMA graft copolymers revealed the formation of globules and ribbon‐like morphological features. The PS‐g‐PAEMA graft copolymers form complex with Fe(III) in dimethylformamide and the AFM studies suggest the formation of globular superstructures. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Characterization of block size in poly(ethylene oxide)‐b‐poly(styrene) (PEO‐b‐PS) block copolymers could be achieved by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) after scission of the macromolecules into their constituent blocks. The performed hydrolytic cleavage was demonstrated to specifically occur on the targeted ester function in the junction group, yielding two homopolymers consisting of the constitutive initial blocks. This approach allows the use of well‐established MALDI protocols for a complete copolymer characterization while circumventing difficulties inherent to amphiphilic macromolecule ionization. Although the labile end‐group in PS homopolymer was modified by the MALDI process, PS block size could be determined from MS data since polymer chains were shown to remain intact during ionization. This methodology has been validated for a PEO‐b‐PS sample series, with two PEO of number average molecular weight (Mn) of 2000 and 5000 g mol?1 and Mn(PS) ranging from 4000 to 21,000 g mol?1. Weight average molecular weight (Mw), and thus polydispersity index, could also be reached for each segment and were consistent with values obtained by size exclusion chromatography. This approach is particularly valuable in the case of amphiphilic copolymers for which Mn values as determined by liquid state nuclear magnetic resonance might be affected by micelle formation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3380–3390, 2009  相似文献   

17.
The graft copolymers composed of “Y”‐shaped polystyrene‐b‐poly(ethylene oxide)2 (PS‐b‐PEO2) as side chains and hyperbranched poly(glycerol) (HPG) as core were synthesized by a combination of “click” chemistry and atom transfer radical polymerization (ATRP) via “graft from” and “graft onto” strategies. Firstly, macroinitiators HPG‐Br were obtained by esterification of hydroxyl groups on HPG with bromoisobutyryl bromide, and then by “graft from” strategy, graft copolymers HPG‐g‐(PS‐Br) were synthesized by ATRP of St and further HPG‐g‐(PS‐N3) were prepared by azidation with NaN3. Then, the precursors (Bz‐PEO)2‐alkyne with a single alkyne group at the junction point and an inert benzyl group at each end was synthesized by sequentially ring‐opening polymerization (ROP) of EO using 3‐[(1‐ethoxyethyl)‐ethoxyethyl]‐1,2‐propanediol (EEPD) and diphenylmethylpotassium (DPMK) as coinitiator, termination of living polymeric species by benzyl bromide, recovery of protected hydroxyl groups by HCl and modification by propargyl bromide. Finally, the “click” chemistry was conducted between HPG‐g‐(PS‐N3) and (Bz‐PEO)2‐alkyne in the presence of N,N,N′,N″,N”‐pentamethyl diethylenetriamine (PMDETA)/CuBr system by “graft onto” strategy, and the graft copolymers were characterized by SEC, 1H NMR and FTIR in details. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
A combination of iridium‐catalyzed C H activation/borylation and atom transfer radical polymerization (ATRP) was used to generate polar graft copolymers of syndiotactic polystyrene (sPS). The borylation at aromatic C H bonds of sPS and subsequent oxidation of boronate ester proceeded without negatively affecting the molecular weight properties and the tacticity of sPS. A macroinitiator suitable for ATRP could be synthesized by the esterification of 2‐bromo‐2‐methylpropionyl bromide and hydroxy‐functionalized sPS. The graft polymerizations of methyl methacrylate and tert‐butyl acrylate from the macroinitiator using ATRP afforded polar block grafted sPS materials, syndiotactic polystyrene‐graft‐poly(methyl methacrylate) (sPS‐g‐PMMA) and syndiotactic polystyrene‐graft‐poly(tert‐butyl acrylate) (sPS‐g‐PtBA). The latter was hydrolyzed to yield an amphiphilic graft copolymer, syndiotactic polystyrene‐graft‐poly(acrylic acid) (sPS‐g‐PAA). The structures of the copolymers were characterized by NMR and FTIR spectroscopies. Size exclusion chromatography and 1H NMR spectroscopy were used to study any changes in the molecular weight properties from the parent polymer. A decrease in the hydrophobicity of the graft copolymers was confirmed by water contact angle measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6655–6667, 2009  相似文献   

19.
In this work, novel star‐hyperbranched block copolymers containing four polystyrene arms and hyperbranched polyglycidol at the end of each arm (sPS‐b‐HPG) have been synthesized. The polystyrene arms were prepared through atom transfer radical polymerization of styrene starting from a four‐arm initiator. The hydroxyl‐terminated PS star polymers served as precursors for the cationic ring‐opening polymerization of glycidol using BF3·OEt2 as the catalyst. The chemical structures of these block copolymers were characterized by using 1H and 13C NMR. DSC analysis indicated that the star‐hyperbranched block copolymers exhibited two distinct glass transition temperatures corresponding to the linear PS and the HPG segments, respectively. The addition of LiClO4 increased the Tg of HPG segments at low concentrations, however, decreased the Tg at high concentrations. The Tg of PS segments was not affected by the addition of salts at all. Furthermore, the interaction of sPS‐b‐HPG with LiBr was studied by using viscosity analysis based on the Jones–Dole equation. The star‐like PS core strengthened the interaction of sPS‐b‐HPG with Li ions that could facile the inhomogeneous distribution of Li cations and anions in different phases, which is important in polymeric electrolytes for lithium chemical power sources. The ionic conductivity of one sPS‐b‐HPG/LiClO4 electrolyte was measured to be higher than that of HPG/LiClO4 electrolyte. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 949–958, 2009  相似文献   

20.
Polydisperse hyperbranched polyesters were modified for use as novel multifunctional reversible addition–fragmentation chain‐transfer (RAFT) agents. The polyester‐core‐based RAFT agents were subsequently employed to synthesize star polymers of n‐butyl acrylate and styrene with low polydispersity (polydispersity index < 1.3) in a living free‐radical process. Although the polyester‐core‐based RAFT agent mediated polymerization of n‐butyl acrylate displayed a linear evolution of the number‐average molecular weight (Mn) up to high monomer conversions (>70%) and molecular weights [Mn > 140,000 g mol?1, linear poly(methyl methacrylate) equivalents)], the corresponding styrene‐based system reached a maximum molecular weight at low conversions (≈30%, Mn = 45,500 g mol?1, linear polystyrene equivalents). The resulting star polymers were subsequently used as platforms for the preparation of star block copolymers of styrene and n‐butyl acrylate with a polyester core with low polydispersities (polydispersity index < 1.25). The generated polystyrene‐based star polymers were successfully cast into highly regular honeycomb‐structured microarrays. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3847–3861, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号