首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Synthetic routes to forty‐four dibenzocrown ether alcohols are reported. The new crown ether com pounds are based on a sym‐dibenzo‐16‐crown‐5 platform. Most have a hydroxy group and an alkyl, aryl, aralkyl, alkenyl, alkynyl, or perfluoroalkyl group on the central carbon of the three‐carbon bridge. Others have substituted benzene rings and either a hydroxy or ‐O(CH2)nOH group attached to the central carbon of the three‐carbon bridge.  相似文献   

2.
Ethyl cyanoacrylate (ECA) was polymerized radically in the presence of small amounts of trifluoroacetic acid as effective inhibitor of incidental anionic polymerization. Methyl methacrylate and other functional vinyl monomers (e.g., 2‐chloroethyl and 2‐bromoethyl methacrylate) were copolymerized with ECA, yielding linear ECA‐rich copolymers, which could readily undergo further modifications, for instance nucleophilic substitution with azide. In the presence of a disulfide‐containing dimethacrylate crosslinker and a chain transfer agent (CBr4) during the free radical copolymerizations of ECA with methacrylates, highly branched ECA‐based polymers containing disulfide groups at the branching points were obtained prior to gelation. The polymers degraded upon addition of reducing agents. The prepared polymers, which contained peripheral (chain end) alkyl bromide groups as well as pendant alkyl chloride or bromide groups were then reacted with sodium azide, affording azide‐containing polymers that were reacted with functional alkynes under copper‐catalyzed “click” chemistry conditions. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3683–3693  相似文献   

3.
The ability of certain alkyl substituted epoxides to accelerate the photoinitiated cationic ring‐opening polymerizations of oxetane monomers by substantially reducing or eliminating the induction period altogether has been termed by us “kick‐starting.” In this communication, the rates of photopolymerization of several model “kick‐started” oxetane systems were quantified and compared with the analogous biscycloaliphatic epoxide monomer, 3,4‐epoxycyclohexylmethyl 3′,4′‐epoxycyclohexanecarboxylate (ERL). It has been found that the “kick‐started” systems undergo photopolymerization at rates that are at least two‐fold faster than ERL. These results suggest that “kick‐started” oxetanes could replace ERL in many applications in which high speed ultraviolet induced crosslinking photopolymerizations are carried out. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 586–593  相似文献   

4.
A catalytic asymmetric intramolecular homologation of simple ketones with α‐diazoesters was firstly accomplished with a chiral N,N′‐dioxide–Sc(OTf)3 complex. This method provides an efficient access to chiral cyclic α‐aryl/alkyl β‐ketoesters containing an all‐carbon quaternary stereocenter. Under mild conditions, a variety of aryl‐ and alkyl‐substituted ketone groups reacted with α‐diazoester groups smoothly through an intramolecular addition/rearrangement process, producing the β‐ketoesters in high yield and enantiomeric excess.  相似文献   

5.
A straightforward synthesis of amphiphilic β‐cyclodextrin‐poly(4‐acryloylmorpholine) (β‐CD‐PACM) polymers of controlled molecular weight, consisting of the radical polymerization of 4‐acryloylmorpholine in the presence of 6‐deoxy‐6‐mercapto‐β‐cyclodextrin (β‐CD‐SH) as chain‐transfer agent, has been established. These derivatives carry a single β‐cyclodextrin (β‐CD) moiety at one terminus and their average molecular weight is in the order of 104. Thus, their β‐CD content is ~ 10% by weight. No evidence of un‐functionalized PACM was found in the final products. The chain‐transfer constant (CT) of β‐CD‐SH was found to be 1.30 by independently determining the reaction constants of both chain‐transfer and propagation reactions. This ensures that the molecular weight, hence the β‐CD content of the polymers, does not significantly vary with conversion. These β‐CD‐PACM polymers are highly soluble in water as well as in several organic solvents such as chloroform and lower alcohols. They proved capable of solubilizing in water poorly soluble drugs such as 9‐[(2‐hydroxyethoxy)methyl]guanine (Acyclovir) and of gradually releasing them in aqueous systems. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1607–1617, 2008  相似文献   

6.
New monoalkyl‐substituted lactides were synthesized by reaction of α‐hydroxy acids with 2‐bromopropionyl bromide, and polymerized with various catalysts in the presence of benzyl alcohol by ring‐opening polymerization (ROP). The classic tin(II) 2‐ethylhexanoate (Sn(Oct)2) catalyst was leading to polymers with narrow distribution and predictable molecular weights, in polymerizations in bulk or toluene at 100 °C. The polymerization rate was corresponding to the steric hindrance of the alkyl substituents, such as butyl, hexyl, benzyl, isopropyl, and dimethyl groups. A yield of 83% was obtained with the hexyl‐substituted lactide after 1 h of polymerization. Excellent conversions (97%) could be achieved by using the alternative catalyst 4‐(dimethylamino)pyridine (DMAP). This latter organic catalyst was most efficient in polymerizing the more steric‐hindered lactides with good molecular weight and polydispersity control, in comparison to the tin(II) 2‐ethylhexanoate and tin(II) trifluoromethane sulfonate [Sn(OTf)2] catalysts. The efficiency of the DMAP catalyst and the variability of the monomer synthesis route for new alkyl‐substituted lactides allow to prepare and to envision a wide range of new functionalized polylactides for the elaboration of tailored materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4379–4391, 2004  相似文献   

7.
A series of N‐alkyl/aryl carbazole 3,6‐substituted arylene trifluorovinyl ether (TFVE) monomers were synthesized in high purity and yield from a concise four‐step synthesis using carbazole as a starting material. Condensate‐free, step‐growth chain extension of the monomers afforded perfluorocyclobutyl (PFCB) arylene ether homo‐ and copolymers as solution processable, optically transparent blue‐light emissive materials. Arylene TFVE monomers and conversion to PFCB arylene ether polymers were structurally elucidated and purity confirmed by high resolution mass spectroscopy, NMR (1H, 13C, and 19F) spectroscopy, gel permeation chromatography, and attenuated total reflectance Fourier transform infrared analysis. Thermal analysis by differential scanning calorimetry and thermogravimetric analysis revealed glass transition temperatures >150 °C and onset of decomposition in nitrogen >410 °C with 40 wt % char yield up to 900 °C. Optical and electrochemical studies included solution (tetrahydrofuran) and solid state (spin cast thin film) UV–vis/fluorescence spectroscopy and cyclic voltammetry which showed structure dependence of these blue emissive systems on the nature of the N‐alkyl/aryl carbazole substitution in either homo‐ or copolymer configurations. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 552–560  相似文献   

8.
Yttrium [amino‐alkoxy‐bis(phenolate)]amido complexes have been used for the ring‐opening polymerization (ROP) of racemic alkyl β‐malolactonates (4‐alkoxycarbonyl‐2‐oxetanones, rac‐MLARs) bearing an allyl (All), benzyl (Bz) or methyl (Me) lateral ester function. The nature of the ortho‐substituent on the phenolate rings in the metal ancillary dictated the stereocontrol of the ROP, and consequently the syndiotactic enrichment of the resulting polyesters. ROP promoted by catalysts with halogen (Cl, Br)‐disubstituted ligands allowed the first reported synthesis of highly syndiotactic PMLARs (Pr ≥ 0.95); conversely, catalysts bearing bulky alkyl and aryl ortho‐substituted ligands proved largely ineffective. All polymers have been characterized by 1H and 13C{1H} NMR spectroscopy, MALDI‐ToF mass spectrometry and DSC analyses. Statistical and thermal analyses enabled the rationalization of the chain‐end control mechanism. Whereas the stereocontrol of the polymerization obeyed a Markov first‐order (Mk1) model for the ROP of rac‐MLABz and rac‐MLAAll, the ROP of rac‐MLAMe led to a chain end‐control of Markov second‐order type (Mk2). DFT computations suggest that the high stereocontrol ability featured by catalysts bearing Cl‐ and Br‐substituted ligands does not likely originate from halogen bonding between the halogen substituent and the growing polyester chain.  相似文献   

9.
The para‐fluoro‐thiol “click” reaction (PFTCR) was utilized to prepare linear and hyperbranched fluorinated poly (aryl ether‐thioether). For this purpose, 1,2‐bis(perfluorophenoxy)ethane was prepared and reacted with 1,6‐hexandithiol and trimethylolpropane tris(3‐mercaptopropionate), respectively. While hyperbranched polymers were prepared using 0.5 M concentrations of starting materials at room temperature, the linear polymer syntheses were performed at different reaction temperatures and concentrations. The resulting polymers were mainly characterized by NMR measurements and a very distinct fluorine signals regarding meta‐ and ortho‐ positions in the 19F NMR were found for both polymer topologies. In addition to NMR analyses, both linear and hyperbranched polymers were further characterized by using Fourier transform infrared spectroscopy (FT‐IR), gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1853–1859  相似文献   

10.
Four different fluorinated methyl‐ and phenyl‐substituted 4‐(4‐hydroxyphenyl)‐2‐(pentafluorophenyl)‐phthalazin‐1(2H)‐ones, AB‐type phthalazinone monomers, have been successfully synthesized by nucleophilic addition–elimination reactions of methyl‐ and phenyl‐substituted 2‐((4‐hydroxy)benzoyl)benzoic acid with 1‐(pentafluorophenyl)hydrazine. Under mild reaction conditions, the AB‐type monomers underwent self‐condensation polymerization reactions successfully and gave fluorinated poly(phthalazinone ether)s with high molecular weights. Detailed structural characterization of the AB‐type monomers and fluorinated polymers was determined by 1H NMR, 19F NMR, FTIR, and GPC. The solubility, thermal properties, mechanical properties, water contact angles, and optical absorption of the polymers were evaluated. The polymers had high Tgs varying from 337 to 349 °C and decomposition temperatures (Td, 25 wt %) above 409 °C. Tough, flexible films were cast from THF and chloroform solutions. The films showed excellent tensile strengths ranging from 70 to 85 MPa with good hydrophobicities with water contact angles higher than 95.5 °C. The polymers had absorption edges below 340 nm and very low absorbance per cm at higher wavelengths 500–2500 nm. These results indicate that the polymers are promising as high performance materials, for example, membranes and hydrophobic materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1761–1770  相似文献   

11.
Various types of fluorine‐containing star‐shaped poly(vinyl ether)s were successfully synthesized by crosslinking reactions of living polymers based on living cationic polymerization. Star polymers with fluorinated arm chains were prepared by the reaction between a divinyl ether and living poly(vinyl ether)s with fluorine groups (C4F9, C6F13, and C8F17) at the side chain using cationogen/Et1.5AlCl1.5 in a fluorinated solvent (dichloropentafluoropropanes), giving star‐shaped fluorinated polymers in high yields with a relatively narrow molecular weight distribution. The concentration of living polymers for the crosslinking reaction and the molar feed ratio of a bifunctional vinyl ether to living polymers affected the yield and molecular weight of the star polymers. Star polymers with block arms were prepared by a linking reaction of living block copolymers of a fluorinated segment and a nonfluorinated segment. Heteroarm star‐shaped polymers containing two‐ or three‐arm species were synthesized using a mixture of different living polymer species for the reaction with a bifunctional vinyl ether. The obtained polymers underwent temperature‐induced solubility transitions in various organic solvents, and their concentrated solutions underwent sol–gel transitions, based on the solubility transition of a thermoresponsive fluorinated segment. Furthermore, a slight amount of fluorine groups were shown to be effective for physical gelation when those were located at the arm ends of a star polymer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
This study describes a novel precision synthesis strategy for graft copolymers using Friedel–Crafts‐type termination reaction between a cationically prepared poly(styrene derivative) and the naphthyl side groups from a poly(vinyl ether) main chain. The pendant alkoxynaphthyl groups on the poly(vinyl ether) efficiently terminated the living cationic polymerization of p‐acetoxystyrene (AcOSt) with SnCl4 in the presence of ethyl acetate as an added base. This research provides the first example of a well‐defined graft copolymer prepared using this method. The resulting polymer contained 40 poly‐(AcOSt) branches, as calculated from the Mw determined via gel permeation chromatography–MALS analysis, which was in good agreement with the estimated number of branches obtained from 1H NMR analysis. The acetoxy groups in the grafted poly(AcOSt) chains were easily converted into phenolic hydroxy groups under basic conditions. The as‐obtained graft copolymer with poly(p‐hydroxystyrene) side chains exhibited a pH‐sensitive phase separation in water. The synthetic method for preparing the graft copolymers was also effective in the living cationic polymerizations of other styrene derivatives. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4675–4683  相似文献   

13.
Alkenylaluminums undergo asymmetric copper‐catalyzed conjugate addition (ACA) to β‐substituted enones allowing the formation of stereogenic all‐carbon quaternary centers. Phosphinamine–copper complexes proved to be particularly active and selective compared with phosphoramidite ligands. After extensive optimization, high enantioselectivities (up to 96 % ee) were obtained for the addition of alkenylalanes to β‐substituted enones. Two strategies for the generation of the requisite alkenylaluminums were explored allowing for the introduction of aryl‐ and alkyl‐substituted alkenyl nucleophiles. Moreover, alkyl‐substituted phosphinamine (SimplePhos) ligands were identified for the first time as highly efficient ligands for the Cu‐catalyzed ACA.  相似文献   

14.
4‐Isopropenyl phenol ( 4‐IPP ) is a versatile dual functional intermediate that can be prepared readily from bisphenol‐A ( BPA ). Through etherification with epichlorohydrin to the phenolic group of 4‐IPP , it can be converted into 4‐isopropenyl phenyl glycidyl ether ( IPGE ). On further reaction with carbon dioxide in the presence of tetra‐n‐butyl ammonium bromide ( TBAB ) as the catalyst, IPGE was transformed into 4‐isopropenylphenoxy propylene carbonate ( IPPC ) in 90% yield. Cationic polymerization of IPPC with strong acid such as trifluoromethanesulfonic acid or boron trifluoride diethyl etherate as the catalyst at ?40 °C gave a linear poly(isopropenylphenoxy propylene carbonate), poly( IPPC ), with multicyclic carbonate groups substituted uniformly at the side‐chains of the polymer. The cyclic carbonate groups of poly( IPPC ) were further reacted with different aliphatic amines and diamines resulting in formation of polymers with hydroxy‐polyurethane on side‐chains. Syntheses, characterizations of poly( IPPC ) and its conversion into hydroxy‐polyurethane crosslinked polymers were presented. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 802–808  相似文献   

15.
Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analysis revealed that the HCl–vinyl ether adduct/SnCl4/n‐Bu4NCl initiating system induced living cationic polymerization of isobutyl vinyl ether in CH2Cl2 at ?78 °C, that is, the well‐resolved spectra demonstrated that the produced polymers consist of only one series of polymers carrying one initiator fragment at the α end and one methoxy group originated from quenching with methanol at the ω end. The polymer molecular weight as well as the terminal structure were unchanged even when the reaction mixtures were kept unquenched at ?78 °C for an interval of more than five times longer than the reaction period after complete consumption of monomer, which indicates the long lifetime of the living end even under such starved conditions. In contrast, the polymers obtained at a higher temperature, ?15 °C, showed an additional minor series of polymers formed via proton initiation, originating from adventitious water. Under the starved conditions, other side reactions occurred to generate minor series of polymers with an aldehyde ω end or a diisobutyl acetal ω end. Rather surprisingly, however, unsaturated C?C end groups were not detected, which means the absence of β‐proton elimination under these conditions. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1249–1257, 2001  相似文献   

16.
A series of mesogen‐jacketed liquid crystalline polymers, poly{2,2,3,3,4,4,4‐heptafluorobutyl 4′‐hydroxy‐2‐vinylbiphenyl‐4‐carboxylate} (PF3Cm, where m is the number of carbon atoms in the alkoxy groups, and m = 1, 4, 6, and 8), the side chain of which contains a biphenyl core with a fluorocarbon substituent at one end and an alkoxy unit of varying length on the other end, were designed and successfully synthesized via atom transfer radical polymerization. For comparison, poly{butyl 4′‐hydroxy‐2‐vinylbiphenyl‐4‐carboxylate} (PC4Cm), similar to PF3Cm but with a butyl group instead of the fluorocarbon substituent, was also prepared. Differential scanning calorimetric results reveal that the glass transition temperatures (Tgs) of the two series of polymers decrease as m increases and Tgs of the fluorocarbon‐substituted polymers are higher than those of the corresponding butyl‐substituted polymers. Wide‐angle X‐ray diffraction measurements show that the mesophase structures of these polymers are dependent on the number of the carbon atoms in the fluorocarbon substituent and the property of the other terminal substituent. Polymers with fluorocarbon substituents enter into columnar nematic phases when m ≥ 4, whereas the polymer PF3C1 exhibits no liquid crystallinity. For polymers with butyl substituents, columnar nematic phases form when the number of carbon atoms at both ends of the side chain is not equal at high temperatures and disappear after the polymers are cooled to ambient temperature. However, when the polymer has the same number of carbon atoms at both ends of the side chain, a hexagonal columnar phase develops, and this phase remains after the polymer is cooled. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

17.
The reactivity of variably substituted 2‐methyl‐4H‐3,1‐benzoxazin‐4‐ones and 2‐methyl‐4H‐pyrido[2,3‐d][1,3]oxazin‐4‐one towards carbon and oxygen nucleophiles under microwave irradiation conditions was investigated. Optimization of the reaction conditions of oxazinones with carbon nucleophiles led to the synthesis of a series of 4‐hydroxy‐quinolin‐2‐ones and 4‐hydroxy‐1,8‐naphthyridin‐2‐ones in high yields, whereas reaction with a variety of alcohols proceeded smoothly to the formation of the corresponding N‐acetyl‐anthranilates and nicotinates.  相似文献   

18.
A number of stereoisomeric N‐[aryl(alkyl, cycloalkyl)carbonyl]‐exo(endo)‐5‐aminomethylbicyclo[2.2.1]hept‐2‐enes have been synthesized from bicyclo[2.2.1]hept‐2‐en‐exo(endo)‐5‐carbonitrile via reduction of the latter by lithium aluminum hydride and subsequent reactions of the resulting amines with aryl(alkyl, cycloalkyl)carbonyl chlorides and anhydrides. The direction of reaction of amides with peroxy acids does not depend on orientation of substituents in the bicyclic fragment: that is, for both exo‐ and endo‐isomers the epoxidations are completed by the formation of N‐[aryl(alkyl, cycloalkyl)carbonyl]‐exo(endo)‐5‐aminomethyl‐exo‐2,3‐epoxybicyclo[2.2.1] heptanes. The reduction of stereoisomeric epoxides by lithium aluminium hydride proceeds in different directions; that is, isomers with an exo‐oriented amido group form the substituted exo‐5‐alkylaminomethyl‐exo‐2,3‐epoxybicyclo[2.2.1]heptanes and the reactions of epoxides of endo‐amides are accompanied by intramolecular cyclization and completed by the formation of N‐[aryl(alkyl, cycloalkyl)]‐exo‐2‐hydroxy‐4‐azatricyclo[4.2.1.03,7]nonanes. The structures and stereochemical homogenity of the products have been confirmed by the analysis of 1H and 13C NMR spectra, correlation spectroscopy, and nuclear Overhauser enhancement spectroscopy experiments. We discuss the behavior of epoxides and provide an analysis of the coefficients of the atomic orbitals in the molecular orbital–linear combination of atomic orbitals equation (AM1 method). © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:119–130, 2001  相似文献   

19.
The syntheses of well‐defined 7‐arm and 21‐arm poly(N‐isopropylacrylamide) (PNIPAM) star polymers possessing β‐cyclodextrin (β‐CD) cores were achieved via the combination of atom transfer radical polymerization (ATRP) and click reactions. Heptakis(6‐deoxy‐6‐azido)‐β‐cyclodextrin and heptakis[2,3,6‐tri‐O‐(2‐azidopropionyl)]‐β‐cyclodextrin, β‐CD‐(N3)7 and β‐CD‐(N3)21, precursors were prepared and thoroughly characterized by nuclear magnetic resonance and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. A series of alkynyl terminally functionalized PNIPAM (alkyne‐PNIPAM) linear precursors with varying degrees of polymerization (DP) were synthesized via atom transfer radical polymerization (ATRP) of N‐isopropylacrylamide using propargyl 2‐chloropropionate as the initiator. The subsequent click reactions of alkyne‐PNIPAM with β‐CD‐(N3)7 and β‐CD‐(N3)21 led to the facile preparation of well‐defined 7‐arm and 21‐arm star polymers, namely β‐CD‐(PNIPAM)7 and β‐CD‐(PNIPAM)21. The thermal phase transition behavior of 7‐arm and 21‐arm star polymers with varying molecular weights were examined by temperature‐dependent turbidity and micro‐differential scanning calorimetry, and the results were compared to those of linear PNIPAM precursors. The anchoring of PNIPAM chain terminal to β‐CD cores and high local chain density for star polymers contributed to their considerably lower critical phase separation temperatures (Tc) and enthalpy changes during phase transition as compared with that of linear precursors. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 404–419, 2009  相似文献   

20.
A simple and convenient procedure for the synthesis of 14‐aryl or alkyl‐14H‐dibenzo[a. j]xanthene derivatives is described through a one‐pot condensation of β‐naphthol with various aryl or alkyl aldehydes in the presence of HBF4‐SiO2 as the catalyst under thermal and solvent‐free conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号