首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report novel liquid crystalline (LC) polymers containing pendant azobenzene moieties with n‐dodecyl substituents and ethyleneoxy spacers of different lengths and describe their selective detection behaviors to alkali metal ions. The new azopolymers produce homogenous smectic phases with a typical fan‐shaped texture. UV‐Vis and 1H NMR studies confirm that the azopolymers selectively bind to Li+ and Na+, but do not complex with K+, Ba2+, Mg2+, or Ca2+. Both the ethyleneoxy spacer and azobenzene units participate in binding to Li+ and Na+ cations in solution. Interestingly, after formation of the complexed structure, the ratio of cis to trans conformer is considerably increased suggesting stronger interactions of the cis conformer with alkali metal ions. Irradiation of the complexed structure with 365 nm UV induces conversion of the uncomplexed trans to the cis. These findings suggest a great potential of the LC azopolymers as selective sensors or separation membranes for alkali metal ions. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1713–1723  相似文献   

2.
Photoinduced reversible solid‐to‐liquid transitions of azobenzene‐containing materials can control adhesion. Photoswitchable adhesives based on azobenzene‐containing small molecules and polymers are under intense investigation. The melting points or glass transition temperatures of such azobenzene‐containing materials in trans and cis forms are above and below room temperature, respectively. Photoswitching of these materials results in reversible transcis isomerization and solid‐to‐liquid transitions. The solid trans azobenzene‐containing materials have strong adhesion and the liquid cis azobenzene‐containing materials have weaker adhesion. In this Minireview, we introduce adhesives based on azobenzene‐containing small molecules and polymers. The remaining challenges and perspectives in the field of photoswitchable adhesives using azobenzene‐containing materials are also discussed.  相似文献   

3.
The low-temperature polycondensation of trans-azobenzene-4,4′-dicarbonyl chloride with (S)-(−)-1,1′-binaphthyl-2,2′-diamine and/or 1,4-bis(3-aminophenoxy-4′-benzoyl)benzene afforded a new series of poly(aryl ether ketone amide)s with both fixed and photoinducible kinking elements positioned randomly along the main chain. In their lower energy, trans-azobenzene configurations, the orange, film-forming materials were amorphous, highly tractable, and thermally stable under air or nitrogen up to about 420°C. Variants endowed with higher loadings of the bent binaphthyl monomer were soluble in a variety of organic solvent media including THF and acetone. The introduction of cis-azobenzene backbone kinks into these materials was carried out by irradiating the polymer solutions with near-UV light. Up to 70% of the azobenzene moieties in these polymers were capable of assuming the higher energy cis-configuration, thus greatly increasing the number of bent or kinked sites positioned along each polymer backbone. In solution, reverse cistrans isomerization reactions were triggered thermally and were quantitatively tracked by both optical absorbance and 1H NMR spectroscopies. Activation parameters calculated for cistrans reorganization of the polymer backbone were not dependent upon the chemical composition or molecular weight of the polymers but did exhibit a small dependence upon the nature of the solvent medium used to conduct the isomerization experiment. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2827–2837, 1998  相似文献   

4.
Two novel and well‐defined polymers, poly[6‐(5‐(diphenylamino)‐2‐((4‐methoxyphenyl)diazenyl)phenoxy)hexyl methacrylate] (PDMMA) and poly[6‐(4‐((3‐ethynylphenyl)diazenyl) phenoxy)hexyl methacrylate] (PDPMMA), which bear triphenylamine (TPA) incorporated to azobenzene either directly (PDMMA) or with an interval (PDPMMA) as pendant groups were successfully prepared via reversible addition‐fragmentation chain transfer polymerization technique. The electrochemical behaviors of PDPMMA and PDMMA were investigated by cyclic voltammograms (CV) measurement. The hole mobilities of the polymer films were determined by fitting the J‐V (current‐voltage) curve into the space‐charge‐limited current method. The influence of photoisomerization of the azobenzene moiety on the behaviors of fluorescence emission, CV and hole mobilities of these two polymers were studied. The fluorescent emission intensities of these two polymers in CH2Cl2 were increased by about 100 times after UV irradiation. The oxidation peak currents (IOX) of the PDMMA and PDPMMA in CH2Cl2 were increased after UV irradiation. The photoisomerization of the azobenzene moiety in PDMMA had significant effect on the electrochemical behavior, compared with that in PDPMMA. The changes of the hole mobility before and after UV irradiation were very small for both polymers. The HOMO energies (EHOMO, HOMO: the highest occupied molecular orbital) of side chain moieties of TPA incorporated with cis‐isomer and trans‐isomer of azobenzene in PDMMA and PDPMMA were obtained by theoretical calculation, which are basically consistent with the experimental results. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
Optically active 1‐methylpropargyl esters bearing azobenzene groups, namely, (S)‐(?)‐3‐methyl‐3‐{4‐[4‐(n‐butyloxy)phenylazophenyl]carbonyl}oxy‐1‐propyne ( 1 ), (S)‐(?)‐3‐methyl‐3‐{4‐[4‐(n‐hexyloxy)phenylazophenyl]carbonyl}oxy‐1‐propyne ( 2 ), and (S)‐(?)‐3‐methyl‐3‐{4‐[4‐(n‐octyloxy)phenylazophenyl]carbonyl}oxy‐1‐propyne ( 3 ) were synthesized and polymerized with Rh+(nbd)[η6‐C6H5B?(C6H5)3] (nbd, norbornadiene) as a catalyst to afford the corresponding poly(1‐methyloropargyl ester)s with moderate molecular weights (Mn = 24,000–31,300) in good yields (79–84%). Polymers were soluble in common organic solvents including toluene, CHCl3, CH2Cl2, THF, and DMSO, whereas insoluble in diethyl ether, n‐hexane, and methanol. Large optical rotations and strong CD signals demonstrated that all the polymers take a helical structure with a predominantly one‐handed screw sense. The helical structure of the polymers changed with the addition of MeOH and heat. The trans‐azobenzene of the polymer side chains isomerized into cis on UV irradiation, which was accompanied with drastic helical conformational changes of the polymer backbone. The cis‐azobenzene moiety reisomerized into trans on visible‐light irradiation, which induced the recovery of chiral geometry of azobenzene moieties in the side chain. Conformational analysis revealed that the polymers form a tightly twisted right‐handed helical structure with a dihedral angle of 70° at the single bond of the main chain. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4749–4761, 2009  相似文献   

6.
2,6‐Dimethyl‐5‐methylene‐1,3‐dioxa‐4‐one (DMDO), a cyclic acrylate possessing acetal–ester linkage, was obtained as a mixture of cis‐ and trans‐isomers (95:5) from Baylis–Hillman reaction of an aryl acrylate. The radical and anionic polymerizations of DMDO yielded the corresponding vinyl polymers without any side reactions such as cleavage of the acetal–ester linkage. The polymerization behaviors were significantly different from that of the acyclic acrylate, α‐(hydroxymethyl)acrylic acid, which was expected inactive against polymerization due to the steric hindrance around the vinylidene group by the α‐substituent. The acetal–ester linkage of the obtained polymer ( P1 ) was completely cleaved via acid hydrolysis to afford a water soluble polymer, P2 . © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 955–961  相似文献   

7.
We report the synthesis and investigation of a new type of photoresponsive block copolymers (BCPs). They were designed to comprise two water‐soluble polymers containing two different photoisomerizable moieties (either azobenzene and spiropyran or two different azobenzenes), with the two constituting blocks that, when separated, exhibit a lower critical solution temperature (LCST) in water and can shift their LCST in opposite directions upon photoisomerization (decrease of LCST for one polymer and increase for the other). A variety of such doubly photoresponsive BCPs were synthesized using either azobenzene‐ or spiropyran‐containing poly(N,N‐dimethylacrylamide) (PDMA), poly(N‐isopropylacrylamide) (PNIPAM) and poly[methoxydi(ethylene glycol) methacrylate] (PDEGMMA). Their thermal phase transition behaviors in aqueous solution before and after simultaneous photoreactions on the two blocks were investigated in comparison with their constituting blocks, by means of solution transmittance (turbidity) and variable‐temperature 1H NMR measurements. The results show that BCPs displayed a single LCST whose shift upon two photoisomerizations appeared to be determined by the competing and opposing photoinduced effects on the two blocks. Moreover, optically controlling the relative photoisomerization degrees of trans azobenzene‐to‐cis azobenzene and spiropyran‐to‐merocyanine could be used to tune the LCST of BCP solution. This study demonstrates the potential of exploring a more complex photoreaction scheme to optically control the solution properties of water‐soluble thermosensitive BCPs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4055–4066, 2010  相似文献   

8.
The para‐fluoro‐thiol “click” reaction (PFTCR) was utilized to prepare linear and hyperbranched fluorinated poly (aryl ether‐thioether). For this purpose, 1,2‐bis(perfluorophenoxy)ethane was prepared and reacted with 1,6‐hexandithiol and trimethylolpropane tris(3‐mercaptopropionate), respectively. While hyperbranched polymers were prepared using 0.5 M concentrations of starting materials at room temperature, the linear polymer syntheses were performed at different reaction temperatures and concentrations. The resulting polymers were mainly characterized by NMR measurements and a very distinct fluorine signals regarding meta‐ and ortho‐ positions in the 19F NMR were found for both polymer topologies. In addition to NMR analyses, both linear and hyperbranched polymers were further characterized by using Fourier transform infrared spectroscopy (FT‐IR), gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1853–1859  相似文献   

9.
Spiroorthoesters (SOEs), cis‐2,3‐tetramethylene‐1,4,6‐trioxaspiro[4,5]decane ( I ) and cis‐2,3‐tetramethylene‐1,4,6‐trioxaspiro[4,6]undecane ( II ), with different cyclic ether ring sizes were synthesized, and their stereostructure and steric energy were determined. With steric‐hindrance‐sensitized 9‐phenyl‐9,10‐dihydro‐anthracen‐10‐ylium cation as an initiator, I and II underwent regiospecific polymerization to yield trans form of stereoregular poly(ether esters)—poly(trans‐2‐oxycyclohexyl pentanoate) (? [trans‐2‐OCHP]n? ) ( III ) and poly(trans‐2‐oxycyclohexyl hexanoate) (? [trans‐2‐OCHH]n? ) ( V ), respectively. With SnCl4 as another initiator, I and II underwent regiospecific polymerization through different mechanisms to afford cis form poly(cis‐2‐oxycyclohexyl pentanoate) (? [cis‐2‐OCHP]n? ) ( IV ) and trans form (? [trans‐2‐OCHH]n? ) ( VI ) stereoregular poly(ether esters). The polymerization mechanisms of SOEs proceeded in the regiospecific manner were determined by the relationship among the sterostructures of SOEs and its subsequently formed polymers, the steric energy of monomers, and the free energy difference in the transition state of reaction. Owing to the conversion of cis substitution at C‐2 and C‐3 in I or II to the trans form during polymerization, polymers III , V , and VI exhibited a higher volume of expansion during polymerization than IV , which showed high volume shrinkage. Group contributions of divalent trans‐ and cis‐1.2‐cyclohexyl groups were derived and confirmed by measuring the densities of the corresponding stereoregular polymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Three types of bi‐functionalized copolymers ( P1FAz , P2FAz , and P3FAz ) with different numbers of fluorene units and an azobenzene unit were synthesized and characterized using UV–vis and polarized absorption spectroanalysis. The trans‐cis photoisomerization was conformed under 400 nm light irradiation for all copolymers in chloroform. However, in the film state, only the transcis photoisomerization occurred by mono‐fluorene attached copolymer poly[(9,9‐di‐n‐octylfluorenyl‐2,7‐diyl)‐alt‐4,4′‐azobenzene)] ( P1FAz ). Photo‐induced alignment was achieved using the P1FAz film after irradiation with linear polarized 400 nm light and subsequent annealing at 60 °C. Surface orientation of a spin‐coating film of poly(9,9‐didodecylfluorene) ( F12 ) was achieved using the photo‐induced alignment layer of the P1FAz film after annealing at 90 °C. The photo‐induced alignment layer of P1FAz has potential application to the surface orientation technique for appropriate polymers, which will be useful for the fabrication of optoelectronics devices. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
The tadpole‐shaped amphiphilic copolymers with cyclic polystyrene as the head and a linear poly(N‐isopropylacrylamide) as the tail have been successfully synthesized by combination of reversible addition‐fragmentation chain transfer (RAFT) polymerization and “click” reaction. The synthesis involves two main steps: (1) preparation of a linear acetylene‐terminated PNIPAAM‐b‐PS with a side azido group anchored at the junction between two blocks; (2) intramolecular cyclization reaction to produce the cyclic PS block using “click” chemistry under high dilution. The structures, molecular weights, and molecular weight distributions of the resulted intermediates and the target polymers were characterized by their 1H NMR, FTIR, and gel permeation chromatography. The difference of surface property between tadpole‐shaped polymer and its linear precursor was observed, and the water contact angles on the former surface are larger than that of the latter surface. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2390–2401, 2008  相似文献   

12.
The syntheses of poly(1,3‐dioxan‐5‐yl methacrylate), poly(cis‐2‐phenyl‐1,3‐dioxan‐5‐yl methacrylate), poly(trans‐2‐phenyl‐1,3‐dioxan‐5‐yl methacrylate), poly(cis‐2‐cyclohexyl‐1,3‐dioxan‐5‐yl methacrylate), and poly(trans‐2‐cyclohexyl‐1,3‐dioxan‐5‐yl methacrylate) are reported. The mechanical relaxation spectrum of the simplest polymer, poly(1,3‐dioxan‐5‐yl methacrylate), exhibits a prominent β relaxation centered at ?98 °C, at 1 Hz, followed in increasing order of temperature by an ostensible glass–rubber relaxation process. In addition to the β relaxation, the loss curves of poly(trans‐2‐phenyl‐1,3‐dioxan‐5‐yl methacrylate) and poly(trans‐2‐cyclohexyl‐1,3‐dioxan‐5‐yl methacrylate) display in the glassy state a high activation energy relaxation, named the β* process, that seems to be a precursor of the glass–rubber relaxation of these polymers. The mechanical spectra of poly(trans‐2‐cyclohexyl‐1,3‐dioxan‐5‐yl methacrylate) and poly(cis‐2‐cyclohexyl‐1,3‐dioxan‐5‐yl methacrylate) exhibit a low activation energy process in the low‐temperature side of the spectra, which is absent in the other polymers. The molecular origin of the mechanical activity of these polymers in the glassy state is discussed in qualitative terms. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1154–1162, 2002  相似文献   

13.
Highly stereospecific polymerization of a novel sulfur containing aromatic acetylenes, that is, (pn‐octylthiophenyl)acetylene (pOctSPA), was successfully performed using the Rh complex, [Rh(norbornadiene)Cl]2‐TEA, catalyst in the presence of various solvents under mild conditions. The resulting polymers were characterized in detail by 1H NMR, ESR, laser Raman, diffuse reflective UV‐Vis (DRUV‐Vis), and wide angle X‐ray diffraction methods. The data showed that the resulting polymers bear cis‐transoid form, which can induce the cis‐to‐trans isomerization when the cis polymers are subjected to pressure at room temperature under vacuum, breaking rotationally the cis C?C bonds in the main‐chain giving two kinds of π‐radicals, the so‐called cis radical and trans radical as the origin of a polymer magnet like a novel spin glass material. Further, the resulting cis poly(acetylene)s were found to have a helical main‐chain, which is packed in pseudohexagonal crystal called π‐conjugated columnar or nano π‐conjugated columnar as a novel color controllable material. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2836–2850, 2005  相似文献   

14.
Series of high‐cis and cis/trans poly[(fluorophenyl)acetylene]s (PFPhA) have been prepared by polymerization of (2‐fluorophenyl)acetylene, (3‐fluorophenyl)acetylene, and (4‐fluorophenyl)acetylene with catalysts: [Rh(1,5‐cyclooctadiene) OCH3]2 (high‐cis PFPhAs) and tungsten(VI) oxychloride/tetraphenyltin (cis/trans PFPhAs). The molecular weight and configurational stability under various conditions at room temperature were studied for both PFPhAs series by means of size exclusion chromatography, 1H‐NMR, and UV‐vis techniques. All samples exhibited slow degradation when exposed to the atmosphere in the solid state; the rate of degradation was independent on the F‐position on the Ph ring. The rate of degradation increased up to three orders of magnitude in the tetrahydrofuran solution where it was higher for high‐cis polymers compared with their cis/trans counterparts. The degradation of high‐cis PFPhAs was accompanied by significant cis‐to‐trans isomerization in aerated tetrahydrofuran solution. Rate of degradation and isomerization exhibited the same dependence on the F‐position on the Ph ring. The hypothesis was postulated that the degradation of high‐cis PFPhAs in solution was accelerated by cis‐to‐trans isomerization due to which the content of unpaired electrons on the main chains is enhanced. In both high‐cis and cis/trans series of polymers the ortho‐substituted isomers exhibited an enhanced stability compared with meta‐ and para‐substituted isomers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4296–4309, 2010  相似文献   

15.
New class of photo and electrically switchable azobenzene containing pendant bent‐core liquid crystalline monomers ( AZBM 1, 2 , and 3 ) and their polymers ( AZBP 1, 2 , and 3 ) are reported. The synthesized precursors, monomers, and polymers were characterized by FT‐IR, 1H, and 13C NMR spectroscopy. Thermal stability of polymers was examined by thermogravimetric analysis and revealed stable up to 260 °C. The mesophase transition of monomers and polymers are observed through polarized optical microscopy (POM) and further confirmed by differential scanning calorimetry (DSC). The electrically switching property of monomers and their polymers were studied by electro‐optical method. Among the three monomers AZBM 1, 2 , and 3 , AZBM 1 and 2 exhibit antiferroelectric (AF) switching and AZBM 3 exhibits ferroelectric (F) switching behavior. On the other hand, low molecular weight polymers ( AZMP 1, 2 , and 3 ) show weak AF and F switching behavior. The photo‐switching properties of bent‐core azo polymers are investigated using UV‐vis spectroscopy, trans to cis isomerization occurs around 25 s for AZBP‐1 and 30 s for AZBP‐2 and 3 in chloroform, whereas reverse processes take place around 80 and 90 s. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

16.
Novel water‐soluble triply‐responsive homopolymers of N,N‐dimethylaminoethyl methacrylate (DMAEMA) containing an azobenzene moiety as the terminal group were synthesized by atom transfer radical polymerization (ATRP) technique. The ATRP process of DMAEMA was initiated by an azobenzene derivative substituted with a 2‐bromoisobutyryl group (Azo‐Br) in the presence of CuCl/Me6TREN in 1,4‐dioxane as a catalyst system. The molecular weights and their polydispersities of the resulting homopolymers (Azo‐PDMAEMA) were characterized by gel permeation chromatography (GPC). The homopolymers are soluble in aqueous solution and exhibit a lower critical solution temperature (LCST) that alternated reversibly in response to Ph and photoisomerization of the terminal azobenzene moiety. It was found that the LCST increased as pH decreased in the range of testing. Under UV light irradiation, the trans‐to‐cis photoisomerization of the azobenzene moiety resulted in a higher LCST, whereas it recovered under visible light irradiation. This kind of polymers should be particularly interesting for a variety of potential applications in some promising areas, such as drug controlled‐releasing carriers and intelligent materials because of the multistimuli responsive property. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2564–2570, 2010  相似文献   

17.
The end‐to‐end cyclization of telechelic polyisobutylenes (PIB's) toward cyclic polyisobutylenes is reported, using either ring‐closing metathesis (RCM) or the azide/alkyne‐“click”‐reaction. The first approach uses bisallyl‐telchelic PIB's (Mn = 1650, 3680, 9770 g mol?1) and Grubbs 1st‐, 2nd‐, and 3rd‐generation catalyst leading to cyclic PIB's in 60–80% yield, with narrow polydispersities (Mw/Mn = 1.25). Azide/alkyne‐“click”‐reactions of bisalkyne‐telechelic PIB's (Mn = 3840 and 9820 g mol?1) with excess of 1,11‐diazido‐undecane leads to the formation of mixtures of linear/cyclic PIB's under formation of oligomeric cycles. Subsequent reaction of the residual azide‐moieties in the linear PIB's with excess of alkyne‐telechelic PEO enables the chromatographic removal of the resulting linear PEO‐PIB‐block copolymers by column chromatography. Thus pure cyclic PIB's can be obtained using this double‐“click”‐method, devoid of linear contaminants. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 671–680, 2010  相似文献   

18.
Both trans and cis isomers of azobenzene‐linked bis‐terpyridine ligand L1 were incorporated in rigid macrocycles linked by FeII(tpy)2 (tpy: terpyridine) units. The complex of the longer trans‐ L1 is dinuclear [(trans‐ L1 )2 ? FeII2], whereas the complex of the shorter cis‐ L1 is mononuclear [cis‐ L1? FeII]. The complex cis‐ L1? FeII was not only thermally stable but also photochemically inactive. These results indicate a perfectly locked state of cis‐azobenzene. The stable macrocyclic structure of cis‐ L1? FeII causes locking of the isomerization. To the best of our knowledge, this is first example of dual locking of photo‐ and thermal isomerization of cis‐azobenzene.  相似文献   

19.
Summary: Novel azobenzene‐functionalized hydroxypropyl methylcellulose (AZO‐HPMC) polymers and their α‐cyclodextrin (α‐CD) complexes have been prepared. These polymers show interesting sol‐gel transition behavior in aqueous solutions. In the absence of α‐CD, the gelation temperature increases after UV irradiation, while in the presence of α‐CD, the gelation temperature decreases after UV irradiation. The difference in the gelation temperatures between the trans and cis samples of AZO‐HPMC opens a wide operating window for reversible regulation of the sol‐gel transition behavior by photoirradiation.

The UV‐induced cis/trans isomerism of azobenzene‐functionalized hydroxypropyl methylcellulose and its α‐cyclodextrin complexes.  相似文献   


20.
Azobenzene derivatives modified with dithiolato‐bipyridine platinum(II) complexes were synthesized, revealing their highly extended photoresponses to the long wavelength region as well as unique photocontrollable tristability. The absorptions of trans‐ 1 and trans‐ 2 with one azobenzene group on the dithiolene and bipyridine ligands, respectively, cover the range from 300 to 700 nm. These absorptions are ascribed, by means of time‐dependent (TD)DFT calculations, to transitions from dithiolene(π) to bipyridine(π*), namely, interligand charge transfer (CT), π–π*, and n–π* transitions of the azobenzene unit, and π–π* transitions of the bipyridine ligand. In addition, only trans‐ 1 shows distinctive electronic bands, assignable to transitions from the dithiolene(π) to azobenzene(π*), defined as intraligand CT. Complex 1 shows photoisomerization behavior opposite to that of azobenzene: trans‐to‐cis and cis‐to‐trans conversions proceed with 405 and 312 nm irradiation, which correspond to excitation with the intraligand CT, and π–π* bands of the azobenzene and bipyridine units, respectively. In contrast, complex 2 shows photoisomerization similar to that of azobenzene: trans‐to‐cis and cis‐to‐trans transformations occur with 365 and 405 nm irradiation, respectively. Irradiation at 578 nm, corresponding to excitation of the interligand CT transitions, results in cis‐to‐trans conversion of both 1 and 2 , which is the longest wavelength ever reported to effect the photoisomerization of the azobenzene group. The absorption and photochromism of 4 , which has azobenzene groups on both the dithiolato and bipyridine ligands, have characteristics quite similar to those of 1 and 2 , which furnishes 4 with photocontrollable tristability in a single molecule using light at 365, 405, and 578 nm. We also clarified that 1 and 2 have high photoisomerization efficiencies, and good thermal stability of the cis forms. Complexes 3 and 5 have almost the identical photoresponse to those of their positional isomers, complexes 2 and 4 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号