首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, two kinds of high temperature shape memory copolyimides were prepared and the shape memory cycles induced structural evolution of macromolecular chains was investigated in detail. The glass transition temperature (Tg) of poly(benzoxazole‐co‐imide) (PI1) and poly(benzimidazole‐co‐imide) (PI2) are 280 °C and 355 °C, respectively. The results show that PI1 could keep stable macromolecular chain structure under shape memory cycles and exhibit outstanding shape memory performance (Rf > 98%, Rr > 97%) under different stretch condition. Whereas, shape memory cycles induced orientation with more ordered macromolecular chains packing is formed for PI2 after several thermal mechanical cycles, which strongly affect physical crosslinking points, thermal mechanical properties as well as shape memory behaviors. The study on macroscopic property and microscopic structure evolution will promote a better understanding of the shape memory effect of polyimides and accelerate development of high performance polyimides for shape memory applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3858–3867  相似文献   

2.
New diene and dithiol monomers, based on aromatic imides such as benzophenone‐3,3′,4,4′‐tetracarboxylic diimide were synthesized and used in thiol‐ene polymerizations which yield poly(imide‐co‐thioether)s. These linear polymers exhibit limited solubility in various organic solvents. The molecular weights of the polymers were found to decrease with increasing imide content. The glass transition temperature (Tg) of these polymers is dependent on imide content, with Tg values ranging from ?55 °C (with no imide) up to 13 °C (with 70% imide). These thermal property improvements are due to the H‐bonding and rigidity of the aromatic imide moieties. Thermal degradation, as studied by thermogravimetric analysis, was not significantly different to the nonimide containing thiol‐ene polymers made using trimethyloylpropane diallyl ether and 3,5‐dioxa‐1,8‐dithiooctane. It is expected that such monomers may lead to increased glass transition temperatures in other thiol‐ene polymer systems as these normally exhibit low glass transition temperatures. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4637–4642  相似文献   

3.
To introduce intramolecular hydrogen bonds in the polyimides (PIs), 5(6)-amino-2-(5-aminopyridin-2-yl)-benzimidazole (PyPABZ) were designed and synthesized. The intramolecular interaction was indicated by Fourier transform infrared when different copolyimides were prepared with 4,4′-oxydianiline and PyPABZ. These modified poly(benzimidazole imide)s eliminate the problem of high water absorption for benzimidazole (BI)-containing PIs in the materials applications. Moreover, the high packing coefficient and rigidity of these copolyimides caused by the strong intramolecular interaction from the H-bonding and the resulting PIs exhibited outstanding thermal properties such as high glass-transition temperature (Tg) and low coefficient of thermal expansion.  相似文献   

4.
Benzoxazine monomer (Ba) was blended with soluble poly(imide‐siloxane)s in various weight ratios. The soluble poly(imide‐siloxane)s with and without pendent phenolic groups were prepared from the reaction of 2,2′‐bis(3,4‐dicarboxylphenyl)hexafluoropropane dianhydride with α,ω‐bis(aminopropyl)dimethylsiloxane oligomer (PDMS; molecular weight = 5000) and 3,3′‐dihydroxybenzidine (with OH group) or 4,4′‐diaminodiphenyl ether (without OH group). The onset and maximum of the exotherm due to the ring‐opening polymerization for the pristine Ba appeared on differential scanning calorimetry curves around 200 and 240 °C, respectively. In the presence of poly(imide‐siloxane)s, the exothermic temperatures were lowered: the onset to 130–140 °C and the maximum to 210–220 °C. The exotherm due to the benzoxazine polymerization disappeared after curing at 240 °C for 1 h. Viscoelastic measurements of the cured blends containing poly(imide‐siloxane) with OH functionality showed two glass‐transition temperatures (Tg's), at a low temperature around ?55 °C and at a high temperature around 250–300 °C, displaying phase separation between PDMS and the combined phase consisting of polyimide and polybenzoxazine (PBa) components due to the formation of AB‐crosslinked polymer. For the blends containing poly(imide‐siloxane) without OH functionalities, however, in addition to the Tg due to PDMS, two Tg's were observed in high‐temperature ranges, 230–260 and 300–350 °C, indicating further phase separation between the polyimide and PBa components due to the formation of semi‐interpenetrating networks. In both cases, Tg increased with increasing poly(imide‐siloxane) content. Tensile measurements showed that the toughness of PBa was enhanced by the addition of poly(imide‐siloxane). Thermogravimetric analysis showed that the thermal stability of PBa also was enhanced by the addition of poly(imide‐siloxane). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2633–2641, 2001  相似文献   

5.
Two new benzoxazole or benzothiazole‐containing diimide‐dicarboxylic acid monomers, such as 2‐[3,5‐bis(N‐trimellitimidoyl)phenyl]benzoxazole ( 2 o ) or 2‐[3,5‐bis(N‐trimellitimidoyl)phenyl]benzothiazole ( 2 s ) were synthesized from the condensation reaction between 3,5‐diaminobenzoic acid and 2‐aminophenol or 2‐aminothiophenol in polyphosphoric acid (PPA) with subsequent reaction of trimellitic anhydride in the presence of glacial acetic acid, respectively, and two new series of modified aromatic poly(amide‐imide)s were prepared. This preparation was done with pendent benzoxazole or benzothiazole units from the newly synthesized diimide‐dicarboxylic acid and various aromatic diamines by triphenyl phosphite‐activated polycondensation. In addition, the corresponding unsubstituted poly(amide‐imide)s were prepared under identical experimental conditions for comparative purposes. Characterization of polymers was accomplished by inherent viscosity measurements, FT‐IR, UV–visible, 1H‐NMR spectroscopy and thermogravimetry. The polymers were obtained in quantitative yields with inherent viscosities between 0.39 and 0.81 dl g?1. The solubilities of modified poly(amide‐imide)s in common organic solvents as well as their thermal stability were enhanced compared to those of the corresponding unmodified poly(amide‐imide)s. The glass transition temperature, 10% weight loss temperature, and char yields at 800°C were, respectively, 7–26°C, 17–46°C and 2–5% higher than those of the unmodified polymers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
A series of novel polyimides (PIs) ( 3a–d ) were prepared from 3,3′,5,5′‐tetramethyl‐4,4′‐diaminodiphenyl‐4 ″ ‐isopropyltoluene ( 1 ) with four aromatic dianhydrides via a one‐step high temperature polycondensation procedure. The obtained PIs showed excellent solubility, with most of them dissoluble at a concentration of 10 wt % in amide polar solvents and chlorinated solvents. Their films were nearly colorless and exhibited high‐optical transparency, with the UV cutoff wavelength in the range of 328–353 nm and the transparency at 450 nm >80%. They also showed low‐dielectric constant (2.49–2.94 at 1 MHz) and low‐water absorptions (0.44–0.65%). Moreover, these PIs possessed high‐glass transition temperatures (Tg) beyond 327 °C and excellent thermal stability with 10% weight loss temperatures in the range of 530–555 °C in nitrogen atmosphere. In comparison with some fluorinated poly(ether imide)s derived from the trifluoromethyl‐substituted bis(ether amine)s, the resultant PIs 3a–d showed better solubility, lower cutoff wavelength, and higher Tg. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3309–3317, 2009  相似文献   

7.
Poly(epoxy imide)s were prepared by a reaction between a hydroxyl‐group‐containing soluble copolyimide and commercial epoxy resins at 220 °C for 2 h. Poly(epoxy imide) thin films exhibited higher thermal stability and lower dielectric constants than a commercial flip‐chip package material (U300). The thermal stabilities of the poly(epoxy imide)s were 1.4–2.0 times higher than that of U300. The thermal stability increased with increasing crosslink density and with decreasing bulky CF3 groups (which were easily decomposable). The dielectric constants of the poly(epoxy imide)s were 1.1–1.3 times lower than that of U300, and this is highly desirable for the microelectronic packaging industry. The dielectric constant dramatically decreased when bulky CF3 groups were added and when the functionalities of epoxy resins decreased. The residual stresses, slopes in the cooling curves, and glass‐transition temperatures of the poly(epoxy imide)s were measured with a thin‐film stress analyzer. Low residual stresses and slopes in the cooling curves were achieved with a higher crosslink density. However, in the presence of bulky CF3 groups, the copolyimide backbone structure did not affect the residual stress values. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4293–4302, 2004  相似文献   

8.
The polyaddition of fluorine‐containing bis(epoxide)s and fluorine‐containing triazine di(aryl ether)s were examined to give the corresponding fluorine‐containing poly(cyanurate)s. It was observed that the synthesized fluoropolymers had good thermal stabilities and good film‐forming properties. The glass transition temperatures (Tg's) and refractive‐indices (nD's) of synthesized polymers were determined by differential scanning calorimetry and ellipsometry, respectively, and it was found that the values of Tg's and nD's were supported by their fluorine containing ratios and skeletons. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4421–4429, 2007  相似文献   

9.
A series of poly(amide–imide)s IIIa–m containing flexible isopropylidene and ether groups in the backbone were synthesized by the direct polycondensation of 4,4′‐[1,4‐phenylenebis(isopropylidene‐1,4‐phenyleneoxy)]dianiline (PIDA) with various bis(trimellitimide)s IIa–m in N‐methyl‐2‐pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. The resulting poly(amide–imide)s had inherent viscosities in the range of 0.80–1.36 dL/g. Except for those from the bis(trimellitimide)s of p‐phenylenediamine and benzidine, all the polymers could be cast from DMAc into transparent and tough films. They exhibited excellent solubility in polar solvents. The 10% weight loss temperatures of the polymers in air and in nitrogen were all above 495°C, and their Tg values were in the range of 201–252°C. Some properties of poly(amide–imide)s III were compared with those of the corresponding poly(amide–imide)s V prepared from the bis(trimellitimide) of diamine PIDA and various aromatic diamines. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 69–76, 1999  相似文献   

10.
Two new bio‐based diacylhydrazide monomers, namely, 4,4′‐(propane‐1,3‐diylbis(oxy))bis(3‐methoxybenzohydrazide) and 4,4′‐(propane‐1,3‐diylbis(oxy))bis(3,5‐dimethoxybenzohydrazide) were synthesized starting from lignin‐derived phenolic acids, namely, vanillic acid and syringic acid. A series of poly(amide imide)s was synthesized by polycondensation of these diacylhydrazide monomers with commercially available aromatic dianhydrides. Poly(amide imide)s showed inherent viscosity in the range 0.44–0.56 dL g?1 and exhibited good solubility in organic solvents. Poly(amide imide)s could be cast into transparent, flexible, and tough films from their N ,N‐dimethylacetamide solutions. Poly(amide imide)s showed 10% weight loss in the temperature range 340–364 °C indicating their good thermal stability. Glass transition temperature (T g) of poly(amide imides)s were measured by DSC and DMA which were in the range 201–223 °C and 214–248 °C, respectively. The T g values of poly(amide imide)s were dependent on the number methoxy substituents on aromatic rings of diacylhydrazide monomers. Molecular dynamics simulation studies revealed that chain rigidity is the dominant factor for observed trends in T g. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3636–3645  相似文献   

11.
Copoly(ethylene terephthalate‐imide)s (PETIs) were synthesized by the melt copolycondensation of bis(2‐hydroxyethyl)terephthalate with a new imide monomer, N,N′‐bis[p‐(2‐hydroxyethoxycarbonyl)phenyl]‐biphenyl‐3,3′,4,4′‐tetracarboxydiimide (BHEI). The copolymers were characterized by intrinsic viscosity, Fourier transform infrared, 1H NMR, differential scanning calorimetry, and thermogravimetric analysis techniques. Although their crystallinities decreased as the content of BHEI units increased, the glass‐transition temperatures (Tg) increased significantly. When 5 or 10 mol % BHEI units were incorporated into poly(ethylene terephthalate), Tg increased by 10 or 24 °C, respectively. The thermal stabilities of PETI copolymers were about the same as the thermal stability of PET, whereas the weight loss of PETIs decreased as the content of BHEI units increased. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 408–415, 2001  相似文献   

12.
A novel positive‐working and aqueous‐base‐developable photosensitive poly(imide benzoxazole) precursor based on a poly(amic acid hydroxyamide) bearing phenolic hydroxyl groups and carboxylic acid groups, a diazonaphthoquinone (DNQ) photosensitive compound, and a solvent was developed. Poly(amic acid hydroxyamide) was prepared through the polymerization of 2,2‐bis(3‐amino‐4‐hydroxyphenyl)hexafluoropropane, trimellitic anhydride chloride, and 4,4′‐oxydibenzoyl chloride. Subsequently, the thermal cyclization of the poly(amic acid hydroxyamide) precursor at 350 °C produced the corresponding poly(imide benzoxazole). The inherent viscosity of the precursor polymer was 0.17 dL/g. The cyclized poly(imide benzoxazole) showed a high glass‐transition temperature of 372 °C and 5% weight loss temperatures of 535 °C in nitrogen and 509 °C in air. The structures of the precursor polymer and the fully cyclized polymer were characterized with Fourier transform infrared and 1H NMR. The photosensitive polyimide precursor containing 25 wt % DNQ photoactive compound showed a sensitivity of 256 mJ/cm2 and a contrast of 1.14 in a 3‐μm film with a 0.6 wt % tetramethylammonium hydroxide developer. A pattern with a resolution of 5 μm was obtained from this composition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5990–5998, 2004  相似文献   

13.
New poly(imide–benzoxazole) copolymers were prepared directly from a dianhydride, a diacid chloride, and a bis(o‐diaminophenol) monomer in a two‐step method. In the first step, poly(amic acid–hydroxyamide) precursors were synthesized by low‐temperature solution polymerization in an organic solvent. Subsequently, the thermal cyclodehydration of the poly(amic acid–hydroxyamide) precursors at 350 °C produced the corresponding poly(imide–benzoxazole) copolymers. The inherent viscosities of the precursor polymers were around 0.19–0.33 dL/g. The cyclized poly(imide–benzoxazole) copolymers had glass‐transition temperatures in the range of 331–377 °C. The 5% weight loss temperatures ranged from 524 to 535 °C in nitrogen and from 500 to 514 °C in air. The poly(imide–benzoxazole) copolymers were amorphous, as evidenced by the wide‐angle X‐ray diffraction measurements. The structures of the precursor copolymers and the fully cyclized copolymers were characterized by Fourier transform infrared, 1H NMR, and elemental analysis. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6020–6027, 2005  相似文献   

14.
Two closely series of poly(ester imide)s had been synthesized by solution polycondensation of p‐phenylenebis(trimellitate) dianhydride with aliphatic diamines. The differential scanning calorimetry (DSC) traces of the most poly(ester imide)s exhibited two endotherms representing the solid state to anisotropic phase transition (Tm1) and the anisotropic to isotropic melt transition (Tm2), respectively. Observation under polarizing microscope and wide‐angle X‐ray diffraction (WAXD) measurements suggested that the anisotropic phase formed above the melting points (Tm1) had a smectic character. The thermogravimetric analyses (TGA) revealed that the thermal stabilities of the poly(ester imide)s were up to 350°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 211–218, 1999  相似文献   

15.
High‐molecular‐weight poly(phthalazinone)s with very high glass‐transition temperatures (Tg's) were synthesized via a novel N–C coupling reaction. New bisphthalazinone monomers ( 7a–e ) were synthesized from 2‐(4‐chlorobenzoyl) phthalic acid in two steps. Poly(phthalazinone)s, having inherent viscosities in the range of 0.34–0.91 dL/g, were prepared by the reaction of the bis(phthalazinone) monomers with an activated aryl halide in a dipolar aprotic solvent in the presence of potassium carbonate. The poly(phthalazinone)s exhibited Tg's greater than 230 °C. polymer 8b synthesized from diphenyl biphenol and bis(4‐flurophenyl) sulfone demonstrated the highest Tg of 297 °C. Thermal stabilities of the poly(phthalazinone)s were determined by thermogravimetric analysis. All the poly(phthalazinone)s showed a similar pattern of decomposition with no weight loss below 450 °C in nitrogen. The temperatures of 5% weight loss were observed to be about 500 °C. The poly(phthalazinone)s containing 4,4′‐isopropylidenediphenol and 4,4′‐(hexafluoroisopropylidene) diphenol and diphenyl ether linkage were soluble in chlorinated solvents such as chloroform. Other poly‐(phthalazinone)s were soluble in dipolar aprotic solvents such as N,N′‐dimethylacetamide. The soluble poly(phthalazinone)s can be cast as flexible films from solution. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2481–2490, 2003  相似文献   

16.
A novel method was developed to prepare poly(benzoxazinone‐imide) by the dealcoholization of poly(amide‐imide), having pendent ethoxycarbonyl groups, which was prepared from poly(amide acid). The poly(amide acid) was prepared from the reaction of pyromellitic dianhydride and 4,4′‐diamino‐6‐ethoxycarbonyl benzanilide. The curing behavior of the poly(amide acid) was monitored by DSC, which indicated the presence of two broad endotherms, one with maximum at 153 °C due to imide‐ring formation and the other with maximum at 359 °C due to benzoxazinone‐ring formation. The poly(amide acid) was thermally treated at 300 °C/1 h to get poly(amide‐imide) with pendent ester groups, then at 350 °C/2 h to convert into poly(benzoxazinone‐imide) by dealcoholization. Viscoelastic measurements of the poly(amide‐imide) showed that the storage modulus dropped at about 280 °C with glass‐transition temperature (Tg ) at about 340 °C. The storage modulus of poly(benzoxazinone‐imide), however, was almost constant up to 400 °C and no Tg was detected below 400 °C. Also, the tensile modulus and tensile strength of the poly(benzoxazinone‐imide) was much higher than that of the poly(amide‐imide). The 5% decomposition of poly(benzoxazinone‐imide) film was at 535 °C, which reflects its excellent thermal stability. Also, poly(benzoxazinone‐imide) showed more hydrolytic stability against alkali in comparison to polyimides. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1647–1655, 2000  相似文献   

17.
A diimide dicarboxylic acid, 1,4‐bis(4‐trimellitimidophenoxy)naphthalene (1,4‐BTMPN), was prepared by condensation of 1,4‐bis(4‐aminophenoxy)naphthalene and trimellitic anhydride at a 1 : 2 molar ratio. A series of novel poly(amide‐imide)s (IIa–k) with inherent viscosities of 0.72 to 1.59 dL/g were prepared by triphenyl phosphite‐activated polycondensation from the diimide‐diacid 1,4‐BTMPN with various aromatic diamines (Ia–k) in a medium consisting of N‐methyl‐2‐pyrrolidinone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s showed good solubility in NMP, N,N‐dimethylacetamide, and N,N‐dimethylformamide. The thermal properties of the obtained poly(amide‐imide)s were examined with differential scanning calorimetry and thermogravimetry analysis. The synthesized poly(amide‐imide)s possessed glass‐transition temperatures in the range of 215 to 263°C. The poly(amide‐imide)s exhibited excellent thermal stabilities and had 10% weight losses at temperatures in the range of 538 to 569°C under a nitrogen atmosphere. A comparative study of some corresponding poly(amide‐imide)s also is presented. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1–8, 2000  相似文献   

18.
Asymmetric biphenyl type polyimides (PI) derived from 2,3,3′,4′‐biphenyltetracarboxylic dianhydride (a‐BPDA) and p‐phenylenediamine (PDA) or 4,4′‐oxydianiline (ODA) show higher Tgs, and much better thermoplasticity than the corresponding isomeric PIs from symmetric 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (s‐BPDA). In addition, a‐BPDA‐derived PIs are completely amorphous owing to their bent chain structures and highly distorted conformations, whereas the PIs from s‐BPDA are semicrystalline. a‐BPDA‐derived PIs possessing these properties or the a‐BPDA monomer were used as a flexible blend component or a comonomer to improve the insufficient thermoplasticity of semirigid s‐BPDA/PDA homo polymer. The blends composed of s‐BPDA/PDA (80%) with a‐BPDA‐derived PIs (20%), as well as the s‐BPDA/PDA‐based copolymer containing 20% a‐BPDA, showed a certain extent of thermoplasticity above the Tgs without causing a decrease in Tg. In addition, these blends and copolymer provided comparatively low thermal expansion coefficient (ca. 18 ppm). The improved film properties for the blends are related to good blend miscibility. On the other hand, when s‐BPDA/ODA was used as a flexible matrix polymer instead of a‐BPDA‐derived PIs, the 80/20 blend film annealed at 400°C exhibited no prominent softening at the Tg. This result arises from annealing‐induced crystallization of the flexible s‐BPDA/ODA component. Thus, these results revealed that a‐BPDA‐derived PIs are promising candidates as matrix polymers for semirigid s‐BPDA/PDA for the present purpose. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2499–2511, 1999  相似文献   

19.
A CF3‐containing diamine, 1,4‐bis(4‐amino‐2‐trifluromethylphenoxy) benzene ( I ), was prepared from hydroquinone and 2‐chloro‐5‐nitrobenzotrifluoride. Imide‐containing diacids ( V a–h and VI a,b ) were prepared through the condensation reaction of amino acids, aromatic diamines, and trimellitic anhydride. Then, a series of soluble fluorinated polyamides ( VII a–h ) and poly(amide imide)s ( VIII a–h and X a,b ) were synthesized from I with various aromatic diacids ( II a–h ) and imide‐containing diacids ( V a–h and VI a,b ) via direct polycondensation with triphenyl phosphate and pyridine. The polyamides and poly(amide imide)s had inherent viscosities of 1.00–1.70 and 0.79–1.34 dL/g, respectively. All the synthesized polymers showed excellent solubility in amide‐type solvents such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide, and N‐dimethylformamide and afforded transparent and tough films via solvent casting. Polymer films of VII a–h , VIII a–h , and X a,b had tensile strengths of 91–113 MPa, elongations to break of 8–40%, and initial moduli of 2.1–2.8 GPa. The glass‐transition temperatures of the polyamides and poly(amide imide)s were 254–276 and 255–292 °C, respectively, and the imide‐containing poly(amide imide)s had better thermal stability than the polyamides. The polyamides showed higher transparency and were much lighter in color than the poly(amide imide)s, and their cutoff wave numbers were below 400 nm. In comparison with isomeric IX c – h , poly(amide imide)s VIII c–h exhibited less coloring and showed lower yellowness indices. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3116–3129, 2004  相似文献   

20.
The miscibility behavior of poly(2‐ethyl‐2‐oxazoline) (PEOx)/poly(vinyl phenyl ketone hydrogenated) (PVPhKH) blends was studied for the entire range of compositions. Differential scanning calorimetry and thermomechanical analysis measurements showed that all the PEOx/PVPhKH blends studied had a single glass‐transition temperature (Tg). The natural tendency of PVPhKH to self‐associate through hydrogen bonding was modified by the presence of PEOx. Partial IR spectra of these blends suggested that amide groups in PEOx and hydroxyl groups in PVPhKH interacted through hydrogen bonding. This physical interaction had a positive influence on the phase behavior of PEOx/PVPhKH blends. The Kwei equation for Tg as a function of the blend composition was satisfactorily used to describe the experimental data. Pure‐component pressure–volume–temperature data were also reported for both PEOx and PVPhKH. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 636–645, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号