首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Novel amphiphilic star‐block copolymers, star poly(caprolactone)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] and poly(caprolactone)‐block‐poly(methacrylic acid), with hyperbranched poly(2‐hydroxyethyl methacrylate) (PHEMA–OH) as a core moiety were synthesized and characterized. The star‐block copolymers were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). First, hyperbranched PHEMA–OH with 18 hydroxyl end groups on average was used as an initiator for the ring‐opening polymerization of ε‐caprolactone to produce PHEMA–PCL star homopolymers [PHEMA = poly(2‐hydroxyethyl methacrylate); PCL = poly(caprolactone)]. Next, the hydroxyl end groups of PHEMA–PCL were converted to 2‐bromoesters, and this gave rise to macroinitiator PHEMA–PCL–Br for ATRP. Then, 2‐dimethylaminoethyl methacrylate or tert‐butyl methacrylate was polymerized from the macroinitiators, and this afforded the star‐block copolymers PHEMA–PCL–PDMA [PDMA = poly(2‐dimethylaminoethyl methacrylate)] and PHEMA–PCL–PtBMA [PtBMA = poly(tert‐butyl methacrylate)]. Characterization by gel permeation chromatography and nuclear magnetic resonance confirmed the expected molecular structure. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl methacrylate) blocks gave the star‐block copolymer PHEMA–PCL–PMAA [PMAA = poly(methacrylic acid)]. These amphiphilic star‐block copolymers could self‐assemble into spherical micelles, as characterized by dynamic light scattering and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6534–6544, 2005  相似文献   

3.
The light‐responsive behavior in solution and in thin films of block copolymers bearing 2‐nitrobenzyl photocleavable esters as side groups is discussed in this article. The polymers were synthesized by grafting 2‐nitrobenzyl moieties onto poly(acrylic acid)‐block‐polystyrene (PAA‐b‐PS) precursor polymers, leading to poly(2‐nitrobenzyl acrylate‐random‐acrylic acid)‐block‐polystyrene (P(NBA‐r‐AA)‐b‐PS) block copolymers. The UV irradiation of the block copolymers in a selective solvent for PS led to the formation of micelles that were used to trap hydrophilic molecules inside their core (light‐induced encapsulation). In addition, thin films consisting of light‐responsive P(NBA‐r‐AA) cylinders surrounded by a PS matrix were achieved by the self‐assembly of P(NBA‐r‐AA)‐b‐PS copolymers onto silicon substrates. Exposing these films to UV irradiation generates nanostructured materials containing carboxylic acids inside the cylindrical nanodomains. The availability of these chemical functions was demonstrated by reacting them with a functional fluorescent dye. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
Self‐assembly of amphiphilic ABA random triblock copolymers in water serves as a novel approach to create unique structure micelles connected with flexible linkages. The ABA triblock copolymers consist of amphiphilic random copolymers bearing hydrophilic poly(ethylene glycol) and hydrophobic dodecyl pendants as the A segments and a hydrophilic poly(ethylene oxide) (PEO) as the middle B segment. The A block is varied in dodecyl methacrylate content of 20%–50% and degree of polymerization (DP) of 100‐200. By controlling the composition and DP of the A block, various architectures can be tailor‐made as micelles in water: PEO‐linked double core unimer micelles, PEO‐looped unimer or dimer micelles, and multichain micelles. Those PEO‐linked or looped micelles further exhibit thermoresponsive solubility in water. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 313–321  相似文献   

5.
N3-苯丙氨酸与嵌段共聚物聚乙二醇-b-聚炔丙基缩水甘油(MPEO-b-PGPE)发生"click"反应,合成了具有光学活性的两亲嵌段共聚物聚乙二醇-B-聚L-苯丙氨酸三唑基缩水甘油(MPEO-b-PGTP),用1H-NMR和元素分析对其结构和组成进行表征.并对其自组装行为进行研究,滴体积法测定MPEO-b-PGTP溶...  相似文献   

6.
In this article, the amphiphilic block copolymers containing polyhedral oligomeric silsesquioxane (POSS), namely PMAPOSS‐b‐PAA and PMAPOSS‐b‐P(AA‐co‐St), were synthesized consecutively by reversible addition–fragmentation chain transfer and selective hydrolysis, and characterized by 1H NMR, 13C NMR, Fourier transform infrared spectroscopy and gel permeation chromatography. In the presence of the nearly gradient styrene distribution along the hydrophilic block with a feed molar ratio of tert‐butyl acrylate (tBA) to St being 10/1, patterned core‐corona nanoparticles (NPs) were formed from the mixture of good/selective solvents (THF/water) by a simple evaporation process at room temperature. With the extending of the co‐block length, the self‐assembled NPs exhibited phase separation behavior of spheres‐dispersed, onion‐like and onion‐cluster hierarchical structures in turn. However, while a change in the feed molar ratio occurred, it resulted in the formation of typical core‐shell micelles (20/1, tBA/St) and disordered particles (5/1, tBA/St), respectively. Furthermore, the self‐assembly behavior of PMAPOSS‐b‐P(AA‐co‐St) in DMF was investigated, which showed that it could perform a mixture morphology of well‐dispersive sphere micelles and large aggregate of micelles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Three amphiphilic rod‐coil diblock copolymers, poly(2‐ethyl‐2‐oxazoline‐b‐γ‐benzyl‐L ‐glutamate) (PEOz‐b‐PBLG), incorporating the same‐length PEOz block length and various lengths of their PBLG blocks, were synthesized through a combining of living cationic and N‐carboxyanhydride (NCA) ring‐opening polymerizations. In the bulk, these block copolymers display thermotropic liquid crystalline behavior. The self‐assembled aggregates that formed from these diblock copolymers in aqueous solution exhibited morphologies that differed from those obtained in α‐helicogenic solvents, that is, solvents in which the PBLG blocks adopt rigid α‐helix conformations. In aqueous solution, the block copolymers self‐assembled into spherical micelles and vesicular aggregates because of their amphiphilic structures. In helicogenic solvents (in this case, toluene and benzyl alcohol), the PEOz‐b‐PBLG copolymers exhibited rod‐coil chain properties, which result in a diverse array of aggregate morphologies (spheres, vesicles, ribbons, and tube nanostructures) and thermoreversible gelation behavior. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3108–3119, 2008  相似文献   

8.
RAFT homopolymerization of 2‐(diisopropylamino)ethyl methacrylate (DPA) and 2‐(diethylamino)ethyl methacrylate (DEA) and their random copolymerization were investigated. The random copolymers of DPA‐ran‐DEA were synthesized and used as macro‐CTA to prepare poly(DPA‐ran‐DEA)‐b‐poly(N‐(2‐hydroxypropyl) methacrylamide) amphiphilic block copolymers. The 1H NMR and GPC measurements confirmed the successful synthesis of these copolymers. The potentiometric titration results showed that the pKb values of these copolymers were in the range of 6.7 ~ 7.7 and linearly varied with the DPA/DEA composition, regardless of the block length of HPMA. The pH‐induced micellization in PBS solution was verified by fluorescence spectroscopy. The dynamic light scattering evaluation showed that the hydrodynamic diameters of these micelles are between 37 ~ 43 nm © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3740–3748, 2008  相似文献   

9.
Ethyl cellulose graft poly(poly(ethylene glycol) methyl ether methacrylate) (EC‐g‐P(PEGMA)) amphiphilic copolymers were synthesized via atom transfer radical polymerization (ATRP) and characterized by FTIR, 1H NMR, and gel permeation chromatography. Reaction kinetics analysis indicated that the graft copolymerization is living and controllable. The self‐assembly and thermosensitive property of the obtained EC‐g‐P(PEGMA) amphiphilic copolymers in water were investigated by dynamic light scattering, transmission electron microscopy, and transmittance. It was found that the EC‐g‐P(PEGMA) amphiphilic copolymers can self‐assemble into spherical micelles in water. The size of the micelles increases with the increase of the side chain length. The spherical micelles show thermosensitive properties with a lower critical solution temperature around 65 °C, which almost independent on the graft density and the length of the side chains. The obtained EC‐g‐P(PEGMA) graft copolymers have both the unique properties of poly(ethylene glycol) and cellulose, which may have the potential applications in biomedicine and biotechnology. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 46: 6907–6915, 2008  相似文献   

10.
Poly(N‐vinyl pyrrolidone)‐block‐poly(N‐vinyl carbazole)‐block‐poly(N‐vinyl pyrrolidone) (PVP‐b‐PVK‐b‐PVP) triblock copolymers were synthesized via sequential reversible addition‐fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process. First, 1,4‐phenylenebis(methylene)bis(ethyl xanthate) was used as a chain transfer agent to mediate the radical polymerization of N‐vinyl carbazole (NVK). It was found that the polymerization was in a controlled and living manner. Second, one of α,ω‐dixanthate‐terminated PVKs was used as the macromolecular chain transfer agent to mediate the radical polymerization of N‐vinyl pyrrolidone (NVP) to obtain the triblock copolymers with various lengths of PVP blocks. Transmission electron microscopy (TEM) showed that the triblock copolymers in bulks were microphase‐separated and that PVK blocks were self‐organized into cylindrical microdomains, depending on the lengths of PVP blocks. In aqueous solutions, all these triblock copolymers can self‐assemble into the spherical micelles. The critical micelle concentrations of the triblock copolymers were determined without external adding fluorescence probe. By analyzing the change in fluorescence intensity as functions of the concentration, it was judged that the onset of micellization occurred at the concentration while the FL intensity began negatively to deviate from the initial linear increase with the concentration. Fluorescence spectroscopy indicates that the self‐assembled nanoobjects of the PVP‐b‐PVK‐b‐PVP triblock copolymers in water were capable of emitting blue/or purple fluorescence under the irradiation of ultraviolet light. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1852–1863  相似文献   

11.
A series of environmentally sensitive ABA triblock copolymers with different block lengths were prepared by reversible addition‐fragmentation chain transfer (RAFT) polymerization from acrylic acid (AA) and N‐isopropylacrylamide (NIPAAm). The GPC and 1H NMR analyses demonstrated the narrow molecular weight distribution and precise chemical structure of the prepared P(AA‐b‐NIPAAm‐b‐AA) triblock copolymers owing to the controlled/living characteristics of RAFT polymerization. The lower critical solution temperature (LCST) of the triblock copolymers could be tailored by adjusting the length of PAA block and controlled by the pH value. Under heating, the triblock copolymers underwent self‐assemble in dilute aqueous solution and formed nanoparticles revealed via TEM images. Physically crosslinked nanogels induced by inter‐/intra‐hydrogen bonding or core‐shell micelle particles thus could be obtained by changing environmental conditions. With a well‐defined structure and stimuli‐responsive properties, the P(AA‐b‐NIPAAm‐b‐AA) copolymer is expected to be employed as a nanocarrier for biomedical applications in controlled‐drug delivery and targeting therapy. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1109–1118  相似文献   

12.
Two chiral amphiphilic diblock copolymers with different relative lengths of the hydrophobic and hydrophilic blocks, poly(6‐O‐p‐vinylbenzyl‐1,2:3,4‐Di‐O‐isopropylidene‐D ‐galactopyranose)‐b‐poly(N‐isopropylacrylamide) or poly(VBCPG)‐b‐poly(NIPAAM) and poly(20‐(hydroxymethyl)‐pregna‐1,4‐dien‐3‐one methacrylate)‐b‐poly(N‐isopropylacrylamide) or poly(MAC‐HPD)‐b‐poly(NIPAAM) were synthesized via consecutive reversible addition‐fragmentation chain‐transfer polymerizations of VBCPG or MAC‐HPD and NIPAAM. The chemical structures of these diblock copolymers were characterized by 1H nuclear magnetic resonance spectroscopy. These amphiphilic diblock copolymers could self‐assemble into micelles in aqueous solution, and the morphologies of micelles were investigated by transmission electron microscopy. By comparison with the lower critical solution temperatures (LCST) of poly(NIPAAM) homopolymer in deionized water (32 °C), a higher LCST of the chiral amphiphilic diblock copolymer (poly(VBCPG)‐b‐poly(NIPAAM)) was observed and the LCST increased with the relative length of the poly(VBCPG) block in the copolymer from 35 to 47 °C, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7690–7701, 2008  相似文献   

13.
A facile synthetic strategy for preparing hydroxylated polymethacrylate amphiphilic block copolymers (PCzMMA‐b‐PBMMA, PFlMMA‐b‐PBMMA) incorporated with primary and secondary hydroxyl groups and electroactive moieties along the polymer backbone is reported. Full characterization, structure‐property relationship and self‐assembly of these polymers are discussed. Due to interplay of hydrophobic/hydrophilic interactions, PCzMMA‐b‐PBMMA formed a layered lattice and PFlMMA‐b‐PBMMA showed a vesicular morphology. Electropolymerization of the electroactive units led to the formation of cross‐conjugated polymer network in solution and in thin films. The network structure was characterized with a range of spectroscopic techniques. Such highly processable polymers may be of interest to applications in which a conducting amphiphilic films with strong adhesion to various substrates are required. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2217–2227  相似文献   

14.
The novel trifunctional initiator, 1‐(4‐methyleneoxy‐2,2,6,6‐tetramethylpip‐eridinoxyl)‐3,5‐bi(bromomethyl)‐2,4,6‐trimethylbenzene (TEMPO‐2Br), was successfully synthesized and used to prepare the miktoarm star amphiphilic poly(styrene)‐(poly(N‐isopropylacrylamide))2 (PS(PNIPAAM)2) via combination of atom transfer radical polymerization (ATRP) and nitroxide‐mediated radical polymerization (NMRP) techniques. Furthermore, the star amphiphilic block copolymer, poly (styrene)‐(poly(N‐isopropylacrylamide‐b‐4‐vinylpyridine))2 (PS(PNIPAAM‐b‐P4VP)2), was also prepared using PS(PNIPAAM)2 as the macroinitiator and 4‐vinylpyridine as the second monomer by ATRP method. The obtained polymers were well‐defined with narrow molecular weight distributions (Mw/Mn ≤ 1.29). Meanwhile, the self‐assembly behaviors of the miktoarm amphiphilic block copolymers, PS(PNIPAAM)2 and PS(PNIPAAM‐b‐P4VP)2, were also investigated. Interestingly, the aggregate morphology changed from sphere‐shaped micelles (4.7 < pH < 3.0) to a mixture of spheres and rods (1.0 < pH < 3.0), and rod‐shaped nanorods formed when pH value was below 1.0. The LCST of PS(PNIPAAM)2 (pH = 7) was about 31 °C and the LCST of PS(PNIPAAM‐b‐P4VP)2 was about 35 °C (pH = 3). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6304–6315, 2009  相似文献   

15.
We report the synthesis of a novel pH‐responsive amphiphilic block copolymer poly(dimethylaminoethyl methacrylate)‐block‐poly(pentafluorostyrene) (PDMAEMA‐b‐PPFS) using RAFT‐mediated living radical polymerization. Copolymer micelle formation, in aqueous solution, was investigated using fluorescence spectroscopy, static and dynamic light scattering (SLS and DLS), and transmission electron microscopy (TEM). DLS and SLS measurements revealed that the diblock copolymers form spherical micelles with large aggregation numbers, Nagg ≈ 30 where the dense PPFS core is surrounded by dangling PDMAEMA chains as the micelle corona. The hydrodynamic radii, Rh of these micelles is large, at pH 2–5 as the protonated PDMAEMA segments swell the micelle corona. Above pH 5, the PDMAEMA segments are gradually deprotonated, resulting in a lower osmotic pressure and enhanced hydrophobicity within the micelle, thus decreasing the Rh. However, the radius of gyration, Rg remains independent of pH as the dense PPFS cores predominate.

  相似文献   


16.
We report on the synthesis of novel poly(N‐isopropylacrylamide)‐b‐poly(oligo ethylene glycol methyl ether acrylate) (PNIPAM‐b‐POEGA) thermoresponsive block copolymers using reversible addition–fragmentation chain transfer polymerization methodologies. The synthesized block copolymers are characterized by gel permeation chromatography, nuclear magnetic resonance, Fourier transform infrared (FTIR) techniques in terms of molecular weight and composition. Their thermoresponsive self‐assembly in aqueous media is investigated using dynamic and static light scattering. The PNIPAM‐b‐POEGA thermoresponsive block copolymers formed aggregates in water by increasing the temperature above the lower critical solution temperature value of PNIPAM block. Solution pH seems to affect the self‐assembly behavior in some cases due to the presence of ? COOH end groups. Therefore, the copolymers were utilized as “smart” nanocarries for the hydrophobic drug indomethacin, implementing a novel encapsulation protocol taking advantage of the thermoresponsive character of the PNIPAM block. The empty and loaded self‐assembled nanocarriers systems were studied by light scattering techniques, ultraviolet–visible, and FTIR spectroscopy, which gave information on the size and structure of the nanocarriers, the drug loading content and the interactions between the drug and the components of the block copolymers. Drug loaded nanostructures show stability at room temperature, due to active drug/block copolymer interactions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1467–1477  相似文献   

17.
Synthesis and self‐assembly behavior of a novel amphiphilic brush‐coil block copolymer bearing hydrophilic poly(ethylene glycol) segment and hydrophobic polypeptide brush segment were presented in this work. The poly(γ‐benzyl‐L ‐glutamate) (PBLG) brush is synthesized through “grafting from” strategy by ring‐opening polymerization of γ‐benzyl‐L ‐glutamate‐N‐carboxyanhydride (BLG‐NCA) initiated by the flanking terminal primary amino group of macroinitiator. The copolymers were characterized by 1H NMR, gel permeation chromatography, Fourier transform infrared, circular dichroism spectrum, and differential scanning calorimetry. The self‐assembly behavior of the brush‐coil block copolymers in aqueous solution was investigated by means of transmission electron microscopy, scanning electron microscopy, atomic force microscopy, and laser light scattering. Spherical micelles were observed when the length of PBLG brush is shorter. The aggregate morphology transforms to spindle‐like micelles and then to rod‐like micelles, as the length of polypeptide brush increases. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5967–5978, 2009  相似文献   

18.
In this work, an amphiphilic diblock copolymer (PEG43b‐PSDTE29) bearing photochromic dithienylethene (DTE) pendants is synthesized by reversible addition fragmentation chain transfer radical polymerization. The diblock copolymer was characterized by spectroscopic methods and gel permeation chromatography. The analyses proved the well‐defined structure and narrow molecular weight distribution of the diblock copolymer. The DTE pendants could undergo reversible photoisomerization between their open and closed forms in solution when irradiated with UV and visible light as indicated by 1H NMR and UV‐vis spectroscopy. Hollow vesicle‐like structures were formed by gradually adding deionized water to the colorless PEG43b‐PSDTE29open (DTE in open form) tetrahydrofuran solution. Under the same conditions, the aggregates formed in the blue PEG43b‐PSDTE29close (DTE in closed form) solution were colloidal spheres with solid interiors. The isomerization of DTE pendants could cause the deformation of the vesicle‐like structures. The above results demonstrate a kind of novel photo‐modulated self‐assembly behavior of the amphiphilic diblock copolymer, which could be used for drug‐delivery and other applications.

  相似文献   


19.
A carboxylic acid based reversible additionfragmentation transfer (RAFT) agent is used to prepare gels composed of worm‐like diblock copolymers using two non‐ionic monomers, glycerol monomethacrylate (GMA) and 2‐hydroxypropyl methacrylate (HPMA). Ionization of the carboxylic acid end‐group on the PGMA stabilizer block induces a worm‐to‐sphere transition, which in turn causes immediate degelation. This morphological transition is fully reversible as determined by TEM and rheology studies and occurs because of a subtle change in the packing parameter for the copolymer chains. A control experiment where the methyl ester derivative of the RAFT agent is used to prepare the same diblock copolymer confirms that no pH‐responsive behavior occurs in this case. This end‐group ionization approach is important for the design of new pH‐responsive copolymer nano‐objects as, unlike polyacids or polybases, only a minimal amount of added base (or acid) is required to drive the morphological transition.  相似文献   

20.
Block copolymers of acryloxy propyl triethoxysilane and styrene were prepared through nitroxide‐mediated polymerization using alkoxyamine initiators based on Ntert‐butyl‐1‐diethylphosphono‐2,2‐dimethylpropyl nitroxide. The copolymers were characterized by 1H NMR, size exclusion chromatography and differential scanning calorimetry. Their micellar behavior in dioxane/methanol solutions was examined through static light scattering and transmission electron microscopy (TEM). TEM indicated the successful formation of spherical micelles which were subsequently frozen by the sol–gel process. Hydrolysis–condensation of the reactive ethoxysilyl side groups was followed by FTIR, 1H NMR, and 29Si NMR. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 784–793, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号