首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two donor–acceptor (D‐A) conjugated polymers, PQx and PphQx, composed of alkylthienyl‐substituted benzo[1,2‐b:4,5‐b']dithiophene (BDTT) as the electron donor and the new electron acceptors quinoxaline (Qx) or phenanthrenequinoxaline (phQx), were synthesized with Stille cross‐coupling reactions. The number‐averaged molecular weights (Mn) of PQx and PphQx were found to be 25.1 and 23.2 kDa, respectively, with a dispersity of 2.6. The band‐gap energies of PQx and PphQx are 1.82 and 1.75 eV, respectively. These results indicate that, because phQx units have highly planar structures, their inclusion in D‐A polymers will be a very effective method for increasing the polymers' effective conjugation lengths. The hole mobilities of PQx and PphQx were determined to be 5.0 × 10?5 and 2.2 × 10?4 cm2 V?1 s?1, respectively. A polymer solar cell device prepared with PphQx as the active layer was found to exhibit a power conversion efficiency (PCE) of 5.03%; thus, the introduction of phQx units enhanced both the short circuit current density and PCE of the device. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2804–2810  相似文献   

2.
Alkoxysubstituted benzo[c][1,2,5]thiadiazole electron accepting units were prepared and copolymerized with various thiophene‐based electron donating monomers to produce new low bandgap polymers P1–4 . The materials showed broad absorption in the range from 300 to 700 nm with bandgaps below 2 eV in solution. Efficiencies of over 1% were obtained from photovoltaic cells using P4 with PCBM as acceptor. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
A new donor–acceptor (D–A) conjugated copolymer based on benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) was synthesized via a Stille cross‐coupling reaction. A highly conjugated thiophene‐based side group, tris(thienylenevinylene) (TTV), was incorporated into each BDT unit to generate the two‐dimensional D–A copolymer (PBDT‐TTV). An alkoxy‐substituted BDT‐based TPD copolymer (PBDT‐OR) was synthesized using the same polymerization method for comparison. PBDT‐TTV thin films produced two distinct absorption peaks. The shorter wavelength absorption (458 nm) was attributed to the BDT units containing the TTV group, and the longer wavelength band (567–616 nm) was attributed to intramolecular charge transfer between the BDT donor and the TPD acceptor. The highest occupied molecular orbital energy levels of PBDT‐OR and PBDT‐TTV were calculated to be −5.53 and −5.61 eV, respectively. PBDT‐TTV thin films harvested a broad solar spectrum covering the range 300–700 nm. A comparison with the PBDT‐OR films revealed stronger interchain π–π interactions in the PBDT‐TTV films and, thus, a higher hole mobility. A polymer solar cell device prepared using PBDT‐TTV as the active layer was found to exhibit a higher power conversion efficiency than a device prepared using PBDT‐OR under AM 1.5 G (100 mW/cm2) conditions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 653–660  相似文献   

4.
A new donor–acceptor (D‐A) conjugated copolymer (PBDTT(ff)‐ttTPD) based on fluorine‐substituted benzodithiophene (BDT) and 6‐alkylthienothienyl thieno[3,4‐c]pyrrole‐4,6‐dione (ttTPD) has been synthesized via a Stille cross‐coupling reaction. As a control, the nonfluorinated BDT‐based ttTPD copolymer (PBDTT‐ttTPD) was also synthesized by using the same polymerization method. The number‐average molecular weights (M n) of PBDTT(ff)‐ttTPD and PBDTT‐ttTPD were found to be 48,000 g/mol (? = 2.2) and 43,000 g/mol (? = 2.1), respectively. The HOMO levels of PBDTT(ff)‐ttTPD and PBDTT‐ttTPD were calculated to be ?5.65 and ?5.45 eV, respectively. The inclusion of fluorinated BDT units is a very effective approach to lowering the polymer's HOMO level. The SCLC mobilities of PBDTT(ff)‐ttTPD and PBDTT‐ttTPD were determined to be 5.9 × 10?4 and 3.0 × 10?4 cm2/Vs, respectively. Polymer solar cell devices prepared with PBDTT(ff)‐ttTPD and PBDTT‐ttTPD as their active layers were found to exhibit power conversion efficiencies of 7.45 and 6.79% with open circuit voltages of 0.98 and 0.84 V, respectively. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2506–2512  相似文献   

5.
π‐Conjugated polymers, PBDT‐CNETT and PBDT‐CNECPDT , were prepared by the Stille cross‐coupling polymerization. Optical and thermal properties of the obtained polymers were investigated by UV–vis spectroscopy and thermogravimetric analysis. PBDT‐CNETT and PBDT‐CNECPDT exhibited very narrow band gaps of 1.39 and 1.13 eV, respectively. Highest occupied molecular orbital energy levels estimated by surface analyzer were ?5.17 and ?5.11 eV for PBDT‐CNETT and PBDT‐CNECPDT , respectively. The solar cells based on these polymers were evaluated with the cell configuration of ITO/PEDOT‐PSS/polymer:PC61BH/LiF/Al. The power conversion efficiencies of the solar cells were estimated to be 1.57 and 0.16% for PBDT‐CNETT and PBDT‐CNECPDT , respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Five novel conjugated copolymers ( P1 – P5 ) containing coplanar cyclopentadithiophene (CPDT) units (incorporated with arylcyanovinyl and keto groups in different molar ratios) were synthesized and developed for the applications of polymer solar cells (PSCs). Polymers P1 – P5 covered broad absorption ranges from UV to near infrared (400–900 nm) with narrow optical band gaps of 1.38–1.70 eV, which are compatible with the maximum solar photon reflux. Partially reversible p‐ and n‐doping processes of P1 – P5 in electrochemical experiments were observed, and the proper molecular design for highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) levels of P1 – P5 induced the highest photovoltaic open‐circuit voltage in the PSC devices, compared with those previously reported CPDT‐based narrow‐band‐gap polymers. Powder X‐ray diffraction (XRD) analyses suggested that these copolymers formed self‐assembled π‐π stacking and pseudobilayered structures. Under 100 mW/cm2 of AM 1.5 white‐light illumination, bulk heterojunction PSC devices containing an active layer of electron donor polymers P1 – P5 mixed with electron acceptor [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) in the weight ratio of 1:4 were investigated. The PSC device containing P1 gave the best preliminary result with an open‐circuit voltage of 0.84 V, a short‐circuit current of 2.36 mA/cm2, and a fill factor of 0.38, offering an overall power conversion efficiency (PCE) of 0.77% as well as a maximal quantum efficiency of 23% from the external quantum efficiency (EQE) measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2073–2092, 2009  相似文献   

7.
Two new thermally crosslinkable hole‐transporting polymers, X‐PTPA and X‐PCz, were synthesized via Yamamoto coupling reactions. The number‐averaged molecular weights (Mn) of X‐PTPA and X‐PCz were found to be 45,000 and 48,000, respectively, and therewith, polydispersity indices were of 1.8 and 1.7, respectively. Thermally crosslinked X‐PTPA and X‐PCz exhibit excellent solvent resistance and stable optoelectronic properties. The UV–visible maximum absorption peaks of X‐PTPA and X‐PCz in the thin film state are at 389 and 322 nm, respectively. The HOMO levels of X‐PTPA and X‐PCz are estimated to be ?5.27 and ?5.39 eV, respectively. Multilayered devices (ITO/crosslinked X‐PTPA or X‐PCz/SY‐PPV/LiF/Al) were fabricated with SY (SuperYellow) as the emitting layer. The maximum efficiency of the multilayered device with a crosslinked X‐PTPA layer is approximately three times higher than that of the device without a crosslinked X‐PTPA layer and much higher than that of the crosslinked X‐PCz device. This result can be explained by the observations that crosslinked X‐PTPA produces increased electron accumulation within the emitter, SY, and also efficient exciton formation due to improved charge balance. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5111–5117  相似文献   

8.
New diketopyrrolopyrrole (DPP)‐containing amorphous conjugated polymers, such as poly(3‐(5‐((9,10‐bis((4‐hexylphenyl)ethynyl)‐6‐(prop‐1‐ynyl)anthracen‐2‐yl)ethynyl) thiophen‐2‐yl)‐5‐(2‐hexyldecyl)‐2‐(2‐octyldodecyl)‐6‐(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) ( 4 ), and poly(3‐(5‐((2,6‐bis((4‐hexylphenyl)ethynyl)‐10‐(prop‐1‐ynyl)anthracen‐9‐yl)ethynyl)thiophen‐2‐yl)‐2,5‐bis(2‐octyldodecyl)‐6‐(thio phen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) ( 7 ), were successfully synthesized via Sonogashira coupling reactions under microwave conditions. Copolymer 7 , incorporating a DPP moiety at the 9,10‐position of the anthracene ring through a triple bond, showed a much lower bandgap energy (Eg = 1.81 eV) than copolymer 4 (Eg = 2.13 eV). Tuning of the molecular frontier orbital energies was achieved by only changing the anchoring position of dithiophenyl‐DPP from the 2,6‐ to the 9,10‐position in the anthracene ring. Because of the donor–acceptor (D–A) interaction and the two‐dimensional planar structure of the X‐shaped donor monomer, the resulting polymers showed good interchain π?π stacking in the thin‐film state, despite being amorphous polymers. When the newly synthesized polymer 7 was used as a semiconductor material in an organic thin‐film transistor, the best mobility of up to 0.12 cm2 V?1 s?1 (Ion/off = ~ 4.4 × 106) was observed, which is one of the highest values recorded for amorphous polymer films reported to date. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
Novel π‐conjugated polymers ( 8 – 10 ) were prepared by the palladium‐catalyzed Sonogashira coupling reaction of three kinds of phosphole‐ring‐containing monomers with 2,5‐dihexyloxyl‐1,4‐diethynylbenzene. The obtained polymers ( 8 – 10 ) were regioregulated with the 2,5‐substituted phosphole ring in the polymer main chain and characterized with 1H, 13C, and 31P NMR and FTIR. Polymers 8 – 10 were found to have an extended π‐conjugated system according to the results of UV–vis absorption spectra. In the fluorescence emission spectra of 8 – 10 , moderate emission peaks were observed in the visible blue‐to‐green region. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2867–2875, 2007  相似文献   

10.
Three new polymers poly(3,4′′′‐didodecyl) hexaselenophene) (P6S), poly(5,5′‐bis(4,4′‐didodecyl‐2,2′‐biselenophene‐5‐yl)‐2,2′‐biselenophene) (HHP6S), and poly(5,5′‐bis(3′,4‐didodecyl‐2,2′‐biselenophene‐5‐yl)‐2,2′‐biselenophene) (TTP6S) that have the same selenophene‐based polymer backbone but different side chain patterns were designed and synthesized. The weight‐averaged molecular weights (Mw) of P6S, HHP6S, and TTP6S were found to be 19,100, 24,100, and 19,700 with polydispersity indices of 2.77, 1.48, and 1.41, respectively. The UV–visible absorption maxima of P6S, HHP6S, and TTP6S are at 524, 489, and 513 nm, respectively, in solution and at 569, 517, and 606 nm, respectively, in the film state. The polymers P6S, HHP6S, and TTP6S exhibit low band gaps of 1.74, 1.95, and 1.58 eV, respectively. The field‐effect mobilities of P6S, HHP6S, and TTP6S were measured to be 1.3 × 10?4, 3.9 × 10?6, and 3.2 × 10?4 cm2 V?1 s?1, respectively. A photovoltaic device with a TTP6S/[6,6]‐phenyl C71‐butyric acid methyl ester (1:3, w/w) blend film active layer was found to exhibit an open circuit voltage (VOC) of 0.71 V, a short circuit current (JSC) of 5.72 mA cm?2, a fill factor of 0.41, and a power conversion efficiency (PCE) of 1.67% under AM 1.5 G (100 mW cm?2) illumination. TTP6S has the most planar backbone of the tested polymers, which results in strong π–π interchain interactions and strong aggregation, leading to broad absorption, high mobility, a low band gap, and the highest PCE. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
A strategy of the fine‐tuning of the degree of intrachain charge transfer and aromaticity of polymer backbone was adopted to design and synthesize new polymers applicable in photovoltaics. Three conjugated polymers P1 , P2 , and P3 were synthesized by alternating the electron‐donating dithieno[3,2‐b:2′3′‐d]pyrrole (D) and three different electron‐accepting (A) segments ( P1 : N‐(2‐ethylhexyl)phthalimide; P2 : 1,4‐diketo‐3,6‐diphenylpyrrolo[3,4‐c]pyrrole; and P3 : thiophene‐3‐hexyl formate) in the polymer main chain. Among the three polymers, P2 possessed the broadest absorption band ranging from 300 to 760 nm, the lowest bandgap (1.63 eV), and enough low HOMO energy level (?5.27 eV) because of the strong intrachain charge transfer from D to A units and the appropriate extent of quinoid state in the main chain of P2 , which was convinced by the theoretical simulation of molecular geometry and front orbits. Photovoltaic study of solar cells based on the blends of P1 – P3 and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) demonstrated that P2 :PCBM exhibited the best performance: a power conversion efficiency of 1.22% with a high open‐circuit voltage (VOC) of 0.70 V and a large short‐circuit current (ISC) of 5.02 mA/cm2 were achieved. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
2,5‐Dihydroxyboryl‐1,1‐dimethyl‐3,4‐bis(3‐fluorophenyl)‐silole ( 2a ) was prepared in 40% overall yield by reaction between 3‐fluorophenyl‐acetylene and dichlorodimethylsilane to yield bis[2(3‐fluorophenyl)ethynyl]dimethylsilane ( 1a ), which subsequently undergoes a reductive cyclization reaction using an excess of lithium naphthalenide. The fluoro substituted silole was applied as a co‐monomer in the Suzuki polycondensation reaction with 2,7‐dibromo‐9,9‐dioctyl‐fluorene. An oligomer ( 3a ) with a degree of polymerization of 6 was prepared and compared with an oligomer without fluoro substitution on the silole ( 3b ), with a degree of polymerization of 4. The new oligomers were spin coated onto glass slides and showed weak green photoluminescence (PL) in the solid state. Cyclic voltammetry, visible absorption spectroscopy, and density functional theory calculations showed that the fluoro substituents were sufficiently electron withdrawing to lower both the highest occupied molecular orbital and the lowest unoccupied molecular orbital in the oligomer. Two further alternating co‐oligomers were prepared from 2,5‐dihydroxyboryl‐1,1‐dimethyl‐3,4‐bis(phenyl)‐silole ( 2b ) and 1,3‐dibromo‐5‐fluoro‐benzene ( 4a ) or 1,3‐dibromobenzene ( 4b ). These oligomers both had degrees of polymerization of 8 and showed green PL in the solid state. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5116–5125, 2009  相似文献   

13.
A series of new phenothiazine‐based donor–acceptor copolymers, P1 and P2, were synthesized via a Suzuki coupling reaction. The weight‐averaged molecular weights (Mw) of P1 and P2 were found to be 16,700 and 16,100, with polydispersity indices of 1.74 and 1.39, respectively. The UV–visible absorption spectra of the polymer thin films contained three strong absorption bands in the ranges 318–320 nm, 430–436 nm, and 527–568 nm. The absorption peaks at 320 and 430 nm originated mainly from the phenothiazine‐based monomer units, and the longer wavelength absorption band at 527–568 nm was attributed to the increased effective conjugation length of the polymer backbones. Solution‐processed field‐effect transistors fabricated with these polymers exhibited p‐type organic thin film transistor characteristics. The field‐effect mobilities of P1 and P2 were measured to be 1.0 × 10?4 and 7.5 × 10?5 cm2 V?1 s?1, respectively, with on/off ratios in the order of 104 for all polymers. A photovoltaic device in which a P2/PC71BM (1/3) blend film was used as the active layer exhibited an open‐circuit voltage (VOC) of 0.70 V, a short‐circuit current (JSC) of 6.79 mA cm(2, a fill factor of 0.39, and a power conversion efficiency of 1.86% under AM 1.5 G (100 mW cm?2) illumination. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Two β‐cyano‐thiophenevinylene‐based polymers containing cyclopentadithiophene ( CPDT‐CN ) and dithienosilole ( DTS‐CN ) units were synthesized via Stille coupling reaction with Pd(PPh3)4 as a catalyst. The effects of the bridged atoms (C and Si) and cyano‐vinylene groups on their thermal, optical, electrochemical, charge transporting, and photovoltaic properties were investigated. Both polymers possessed the highest occupied molecular orbital (HOMO) levels of about ?5.30 eV and the lowest unoccupied molecular orbital (LUMO) levels of about ?3.60 eV, and covered broad absorption ranges with narrow optical band gaps (ca. 1.6 eV). The bulk heterojunction polymer solar cell (PSC) devices containing an active layer of electron‐donor polymers ( CPDT‐CN and DTS‐CN ) blended with an electron‐acceptor, that is, [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) or [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM), in different weight ratios were explored under 100 mW/cm2 of AM 1.5 white‐light illumination. The PSC device based on DTS‐CN: PC71BM (1:2 w/w) exhibited a best power conversion efficiency (PCE) value of 2.25% with Voc = 0.74 V, Jsc = 8.39 mA/cm2, and FF = 0.36. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

15.
This article concerns the hydrosilylation polyaddition of 1,4‐bis(dimethylsilyl)benzene ( 1 ) with 4,4′‐diethynylbiphenyl, 2,7‐diethynylfluorene ( 2b ), and 2,6‐diethynylnaphthalene with RhI(PPh3)3 catalyst. Trans‐rich polymers with weight‐average molecular weights (Mw's) ranging from 19,000 to 25,000 were obtained by polyaddition in o‐Cl2C6H4 at 150–180 °C, whereas cis‐rich polymers with Mw's from 4300 to 34,000 were obtained in toluene at 0 °C–r.t. These polymers emitted blue light in 4–81% quantum yields. The cis polymers isomerized into trans polymers upon UV irradiation, whereas the trans polymers did not. The device having a layer of polymer trans‐ 3b obtained from 1 and 2b demonstrated electroluminescence without any dopant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2774–2783, 2004  相似文献   

16.
We have synthesized a narrow‐bandgap conjugated polymer ( PCTDPP ) containing alternating cyclopentadithiophene (CT) and diketo‐pyrrolo‐pyrrole (DPP) units by Suzuki coupling. This PCTDPP exhibits a low band gap of 1.31 eV and a broad absorption band from 350 to 1000 nm, which allows it to absorb more available photons from sunlight. A bulk heterojunction polymer solar cell incorporating PCTDPP and C70 at a blend ratio of 1:3 exhibited a high short‐circuit current of 10.87 mA/cm2 and a power conversion efficiency of 2.27%. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1669–1675, 2010  相似文献   

17.
A series of new phenothiazylene vinylene‐based semiconducting polymers, poly[3,7‐(4′‐dodecyloxyphenyl)phenothiazylene vinylene] ( P1 ), poly[3,7‐(4′‐dodecyloxyphenyl)phenothiazylene vinylene‐alt‐1,4‐phenylene vinylene] ( P2 ), and poly[3,7‐(4′‐dodecyloxyphenyl)phenothiazylene vinylene‐alt‐2,5‐thienylene vinylene] ( P3 ), have been synthesized via a Horner‐Emmons reaction. FTIR and 1H NMR spectroscopies confirmed that the configurations of the vinylene groups in the polymers were alltrans (E). The weight‐averaged molecular weights (Mw) of P1 , P2 , and P3 were found to be 27,000, 22,000, and 29,000, with polydispersity indices of 1.91, 2.05, and 2.25, respectively. The thermograms for P1 , P2 , and P3 each contained only a broad glass transition, at 129, 167, and 155 °C, respectively, without the observation of melting features. UV–visible absorption spectra of the polymers showed two strong absorption bands in the ranges 315–370 nm and 450–500 nm, which arose from absorptions of the phenothiazine segments and the conjugated main chains. Solution‐processed field‐effect transistors fabricated from these polymers showed p‐type organic thin‐film transistor characteristics. The field‐effect mobilities of P1 , P2 , and P3 were measured to be 1.0 × 10?4, 3.6 × 10?5, and 1.0 × 10?3 cm2 V?1 s?1, respectively, and the on/off ratios were in the order of 102 for P1 and P2 , and 103 for P3 . Atomic force microscopy and X‐ray diffraction analysis of thin films of the polymers show that they have amorphous structures. A photovoltaic device in which a P3 /PC71BM (1/5) blend film was used as the active layer exhibited an open‐circuit voltage (VOC) of 0.42 V, a short circuit current (JSC) of 5.17 mA cm?2, a fill factor of 0.35, and a power conversion efficiency of 0.76% under AM 1.5 G (100 mW cm?2) illumination. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 635–646, 2010  相似文献   

18.
A series of novel narrow‐band‐gap copolymers ( P1 ‐ P12 ) composed of alkyl‐substituted fluorene (FO) units and six analogous mono‐ and bis(2‐aryl‐2‐cyanovinyl)‐10‐hexylphenothiazine monomers ( M1 ‐ M6 ) were synthesized by a palladium‐catalyzed Suzuki coupling reaction with two different feed in ratios of FO to M1 ‐ M6 (molar ratio = 3:1 and 1:1). The absorption spectra of polymers P1 ‐ P12 exhibited broad peaks located in the UV and visible regions from 400 to 800 nm with optical band gaps at 1.55–2.10 eV, which fit near the wavelength of the maximum solar photon reflux. Electrochemical experiments displayed that the reversible p‐ and n‐doping processes of copolymers were partially reversible, and the proper HOMO/LUMO levels enabled a high photovoltaic open‐circuit voltage. As blended with [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) as an electron acceptor in bulk heterojunction photovoltaic devices, narrow‐band‐gap polymers P1 ‐ P12 as electron donors showed significant photovoltaic performance which varied with the intramolecular donor‐acceptor interaction and their mixing ratios to PCBM. Under 100 mW/cm2 of AM 1.5 white‐light illumination, the device of copolymer P12 produced the highest preliminary result having an open‐circuit voltage of 0.64 V, a short‐circuit current of 2.70 mA/cm2, a fill factor of 0.29, and an energy conversion efficiency of 0.51%. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4285–4304, 2008  相似文献   

19.
π‐Conjugated polymers, PTOTBT , PTEHTBT , and PTt‐BTBT , composed of benzothiadiazole as an electron accepting unit and terthiophene as an electron donating unit in the backbone were prepared. PTOTBT , PTEHTBT , and PTt‐BTBT contained side chain groups of n‐octyl, 2‐ethylhexyl, and t‐butyl groups, respectively. Solubility, optical and thermal properties of the polymers showed strong dependences on their side chain groups. PTEHTBT having 2‐ethylhexyl groups in the side chain exhibited absorption maximum (λmax) at longer wavelength (565 nm) than PTOTBT (534 nm) and PTt‐BTBT (495 nm). PTOTBT showed higher thermal stability than the others. The prepared polymers were employed to polymer solar cells (PSCs) with a configuration of ITO/PEDOT‐PSS/polymer: PC61BH/LiF/Al. Power conversion efficiency of the PSC‐based on PTEHTBT was 1.32%. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
Alternating π‐conjugated copolymers of 1,8‐naphthyridine‐2,6‐diyl ( 1,8‐Nap ) with 9,9‐dioctylfluorene‐2,7‐diyl ( P(Flu‐Ph‐1,8‐Nap) ) and 2,5‐didodecyloxy‐1,4‐phenylene ( P(ROPh‐Ph‐1,8‐Nap) ) have been synthesized by Pd‐catalyzed organometallic polycondensation. The copolymers showed UV‐vis absorption peaks at around 390 nm in o‐dichlorobenzene. The polymers were photoluminescent both in o‐dichlorobenzene and in the solid state. In o‐dichlorobenzene, the emission peaks of P(Flu‐Ph‐1,8‐Nap) and P(ROPh‐Ph‐1.,8‐Nap) appeared at λEM = 440 and 471 nm, with quantum yields of 87% and 66%, respectively. Electrochemical data revealed that 1,8‐Nap behaved as a typical electron‐accepting unit. When P(Flu‐Ph‐1,8‐Nap) was treated with 10‐camphorsulfonic acid, the emission peak shifted to λEM = 598 nm. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号