首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four D‐π‐A‐type nonionic oxime sulfonate photoacid generators (PAGs) have been designed and synthesized for use in light‐emitting diode (LED) excitable cationic photoinitiators, in which N,N‐diphenylamino was used as electron donor with trifluoroacetophenone‐based oxime sulfonates (trifluoromethanoesulfonate and p‐toluenesulfonate) as electron acceptor and substituted fluorene and biphenyl groups as the π‐conjugated systems. PAG‐Ben‐Tol (with biphenyl and p‐toluenesulfonate) and PAG‐Flu‐Tol (with fluorene and p‐toluenesulfonate) showed high quantum yields of photoacid generation (0.33–0.50) and very good thermal stability (over 250 °C). The absorbance spectra of these PAGs were consistent with the emission spectra of commercially gained UV–visible LED light sources. The potential of these PAGs for cationic photoinitiators was tested in two cationic monomer systems. These PAGs needed low light intensity and low concentration for photopolymerization with high conversions of monomer, for example, over 80%, gained at 3.0 mW cm−2 from 365 to 470 nm LEDs. The photochemical mechanisms of these PAGs are comprehensively investigated and discussed in detail. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1146–1154  相似文献   

2.
Three‐component photoinitiators comprised of an N‐arylphthalimide, a diarylketone, and a tertiary amine were investigated for their initiation efficiency of acrylate polymerization. The use of an electron‐deficient N‐arylphthalimide resulted in a greater acrylate polymerization rate than an electron‐rich N‐arylphthalimide. Triplet energies of each N‐arylphthalimide, determined from their phosphorescence spectra, and the respective rate constants for triplet quenching by the N‐arylphthalimide derivatives (acquired via laser flash photolysis) indicated that an electron–proton transfer from an intermediate radical species to the N‐arylphthalimide (not energy transfer from triplet sensitization) is responsible for generating the initiating radicals under the conditions and species concentrations used for polymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4009–4015, 2004  相似文献   

3.
A novel fluorinated aromatic diamine, 1,1‐bis(4‐amino‐3,5‐dimethylphenyl)‐1‐(3,5‐ditrifluoromethylphenyl)‐2,2,2‐trifluoroethane (9FMA), was synthesized by the coupling reaction of 3′,5′‐ditrifluoromethyl‐2,2,2‐trifluoroacetophenone with 2,6‐dimethylaniline under the catalysis of 2,6‐dimethylaniline hydrochloride. A series of fluorinated aromatic polyimides were synthesized from 9FMA and various aromatic dianhydrides, including pyromellitic dianhydride, 3,3′4,4′‐biphenyl tetracarboxylic dianhydride, 4,4′‐oxydiphthalic anhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA), and 4,4′‐hexafluoroisopropylidene diphthalic anhydride, via a high‐temperature, one‐stage imidization process. The inherent viscosities of the polyimides ranged from 0.37 to 0.74 dL/g. All the polyimides were quickly soluble in many low‐boiling‐point organic solvents such as tetrahydrofuran, chloroform, and acetone as well as some polar organic solvents such as N‐methyl‐2‐pyrrolidinone, N,N′‐dimethylacetamide, and N,N′‐dimethylformamide. Freestanding fluorinated polyimide films could be prepared and exhibited good thermal stability with glass‐transition temperatures of 298–334 °C and outstanding mechanical properties with tensile strengths of 69–102 MPa and elongations at break of 3.3–9.9%. Moreover, the polyimide films possessed low dielectric constants of 2.70–3.09 and low moisture absorption (<0.58%). The films also exhibited good optical transparency with a cutoff wavelength of 303–351 nm. One polyimide (9FMA/BTDA) also exhibited an intrinsic negative photosensitivity, and a fine pattern could be obtained with a resolution of 5 μm after exposure at the i‐line (365‐nm) wavelength. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2665–2674, 2006  相似文献   

4.
Three novel types of thiophene‐containing oxime sulfonates with a big π‐conjugated system were reported as non‐ionic photoacid generators. The irradiation of the newly synthesized photoacid generators using near UV–visible light‐emitting diodes (LEDs) (365–475 nm) results in the cleavage of two weak N O bonds in single molecules, which lead to the generation of different sulfonic acids in good quantum and chemical yields. The mechanism for the N O bond cleavage for acid generation was supported by the UV–visible spectra and real‐time 1H NMR spectra. They are developed as high‐performance photoinitiators without any additives for the cationic polymerization of epoxide and vinyl ether upon exposure to near‐UV and visible LEDs (365–475 nm) at low concentration. In the field of photopolymerization, especially visible light polymerization, it has great potential for application. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 776–782  相似文献   

5.
An efficient strategy for comprehensive utilization of the conjugated sulfonium salt photoacid generator (PAG), namely, 3‐{4‐[4‐(4‐N,N′‐diphenylamino)‐styryl]phenyl}phenyl dimethyl sulfonium hexafluoroantimonate, was developed through photoinitiated cationic photopolymerization (CP) of epoxides and vinyl ether upon exposure to near‐UV and visible light‐emitting diodes (LEDs; e.g., 365, 385, 405, and 425 nm). Photochemical mechanisms were investigated by UV–vis spectra, molecular orbital calculations, fluorescence, cyclic voltammetry, and electron spin resonance spin‐trapping analyses. Compared with commercial PAGs, the prepared conjugated sulfonium salt generated H+, which can be used as photoinitiator. Moreover, the fluorescent byproducts from photodecomposition can be used as photosensitizer of commercial iodonium salt in the photoinitiating systems of CP. These novel D‐π‐A type sulfonium‐based photoinitiating systems are efficient (epoxide conversion = 85–90% and vinyl conversion >90%; LEDs upon exposure to 365–425 nm) even in low‐concentration initiators (1%, w/w) and low curing light intensities (10–40 mW cm?2). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2722–2730  相似文献   

6.
Two series of novel fluorinated aromatic polyamides were prepared from 1,1‐bis[4‐(4‐carboxyphenoxy)phenyl]‐1‐phenyl‐2,2,2‐trifluoroethane with various aromatic diamines or from 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐phenyl‐2,2,2‐trifluoroethane with various aromatic dicarboxylic acids with the phosphorylation polyamidation technique. These polyamides had inherent viscosities ranging from 0.51 to 1.54 dL/g that corresponded to weight‐average and number‐average molecular weights (by gel permeation chromatography) of 36,200–80,000 and 17,200–64,300, respectively. All polymers were highly soluble in aprotic polar solvents, such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide, and some could even be dissolved in less‐polar solvents like tetrahydrofuran. The flexible and tough films cast from the polymer solutions possessed tensile strengths of 76–94 MPa and initial moduli of 1.70–2.22 GPa. Glass‐transition temperatures (Tg's) and softening temperatures of these polyamides were observed in the range of 185–268 °C by differential scanning calorimetry or thermomechanical analysis. Decomposition temperatures (Td's) for 10% weight loss all occurred above 500 °C in both nitrogen and air atmospheres. Almost all the fluorinated polyamides displayed relatively higher Tg and Td values than the corresponding nonfluorinated analogues. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 420–431, 2003  相似文献   

7.
A study of the photoinitiated and thermally initiated cationic polymerizations of several monomer systems with S,S‐dialkyl‐S‐(3,5‐dimethylhydroxyphenyl)sulfonium salt (HPS) photoinitiators bearing different lengths of alkyl chains on the positively charged sulfur atom has been conducted. HPS photoinitiators are capable of photoinitiating the cationic polymerization of a wide variety of epoxy and vinyl ether monomers directly on irradiation with short‐wavelength UV light. Aryl ketone photosensitizers are effective in extending the spectral response of these photoinitiators into the long‐wavelength UV region. Kinetic studies with real‐time infrared spectroscopy show that HPS photoinitiators exhibit good efficiency in the polymerization of epoxide and vinyl ether monomers. Comparative studies also demonstrate that S,S‐dimethyl‐S‐(3,5‐dimethyl‐2‐hydroxyphenyl)sulfonium salts are more active photoinitiators than their isomeric S,S‐dimethyl‐S‐(3,5‐dimethyl‐4‐hydroxyphenyl)sulfonium salt counterparts. Both types of HPS photoinitiators display reversible photolysis as a result of facile termination reactions that take place between the growing chains ends with the photogenerated sulfur ylides. Preliminary studies have shown that HPS photoinitiators can also be employed as thermal initiators for the cationic ring‐opening polymerization of epoxides at moderate temperatures. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2570–2587, 2003  相似文献   

8.
Six novel poly(amide‐imide)s PAIs 5a‐f were synthesized through the direct polycondensation reaction of six chiral N,N′‐(bicyclo[2,2,2]oct‐7‐ene‐tetracarboxylic)‐bis‐L‐amino acids 3a‐f with bis(3‐amino phenyl) phenyl phosphine oxide 4 in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), triphenyl phosphite (TPP), calcium chloride (CaCl2) and pyridine. The polymerization reaction produced a series of flame‐retardant and thermally stable poly(amide‐imide)s 5a‐f with high yield and good inherent viscosity of 0.39–0.83 dLg?1. The resultant polymers were fully characterized by means of FTIR, 1H NMR spectroscopy, elemental analyses, inherent viscosity, specific rotation and solubility tests. Thermal properties and flame retardant behavior of the PAIs 5a‐f were investigated using thermal gravimetric analysis (TGA and DTG) and limited oxygen index (LOI). Data obtained by thermal analysis (TGA and DTG) revealed that these polymers show good thermal stability. Furthermore, high char yields in TGA and good LOI values indicated that resultant polymers exhibited good flame retardant properties. N,N′‐(bicyclo[2,2,2]oct‐7‐ene‐tetracarboxylic)‐bis‐L‐amino acids 3a‐f were prepared in quantitative yields by the condensation reaction of bicyclo[2,2,2]oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride 1 with L‐alanine 2a , L‐valine 2b , L‐leucine 2c , L‐isoleucine 2d , L‐phenyl alanine 2e and L‐2‐aminobutyric acid 2f in acetic acid solution. These polymers can be potentially utilized in flame retardant thermoplastic materials.  相似文献   

9.
Two new bis(ether acyl chloride)s, 1,1‐bis[4‐(4‐chloroformylphenoxy)phenyl]‐1‐phenylethane and 1,1‐bis[4‐(4‐chloroformylphenoxy)phenyl]‐1‐phenyl‐2,2,2‐trifluoroethane, were prepared from readily available reagents. Aromatic polybenzoxazoles with both ether and phenylethylidene or 1‐phenyl‐2,2,2‐trifluoroethylidene linkages between phenylene units were obtained by a conventional two‐step procedure including the low‐temperature solution polycondensation of the bis(ether acyl chloride)s with three bis(o‐aminophenol)s, yielding poly(o‐hydroxyamide) precursors, and subsequent thermal cyclodehydration. The intermediate poly(o‐hydroxyamide)s exhibited inherent viscosities of 0.39–0.98 dL/g. All of the poly(o‐hydroxyamide)s were amorphous and soluble in polar organic solvents such as N,N‐dimethylacetamide, and most of them could afford flexible and tough films via solvent casting. The poly(o‐hydroxyamide)s exhibited glass‐transition temperatures (Tg's) of 129–194 °C and could be thermally converted into corresponding polybenzoxazoles in the solid state at temperatures higher than 300 °C. All the polybenzoxazoles were amorphous and showed an enhanced Tg but a dramatically decreased solubility with to respect to their poly(o‐hydroxyamide) precursors. They exhibited Tg's of 216–236 °C through differential scanning calorimetry and were stable up to 500 °C in nitrogen or air, with 10% weight‐loss temperatures being recorded between 538 and 562 °C in nitrogen or air. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 914–921, 2003  相似文献   

10.
The homogeneous atom transfer radical polymerization (ATRP) of n‐butyl acrylate with CuBr/N‐(n‐hexyl)‐2‐pyridylmethanimine as a catalyst and ethyl 2‐bromoisobutyrate as an initiator was investigated. The kinetic plots of ln([M]0/[M]) versus the reaction time for the ATRP systems in different solvents such as toluene, anisole, N,N‐dimethylformamide, and 1‐butanol were linear throughout the reactions, and the experimental molecular weights increased linearly with increasing monomer conversion and were very close to the theoretical values. These, together with the relatively narrow molecular weight distributions (polydispersity index ~ 1.40 in most cases with monomer conversion > 50%), indicated that the polymerization was living and controlled. Toluene appeared to be the best solvent for the studied ATRP system in terms of the polymerization rate and molecular weight distribution among the solvents used. The polymerization showed zero order with respect to both the initiator and the catalyst, probably because of the presence of a self‐regulation process at the beginning of the reaction. The reaction temperature had a positive effect on the polymerization rate, and the optimum reaction temperature was found to be 100 °C. An apparent enthalpy of activation of 81.2 kJ/mol was determined for the ATRP of n‐butyl acrylate, corresponding to an enthalpy of equilibrium of 63.6 kJ/mol. An apparent enthalpy of activation of 52.8 kJ/mol was also obtained for the ATRP of methyl methacrylate under similar reaction conditions. Moreover, the CuBr/N‐(n‐hexyl)‐2‐pyridylmethanimine‐based system was proven to be applicable to living block copolymerization and living random copolymerization of n‐butyl acrylate with methyl methacrylate. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3549–3561, 2002  相似文献   

11.
Intrigued by the good performance of 1,5‐diphenylpenta‐1,4‐diyn‐3‐one ( DPD ) as photoinitiator for radical polymerization we prepared and investigated several donor substituted derivatives. UV‐Vis spectroscopy revealed a gradual red‐shift of λmax and higher extinction in the order of the donor capability. A methoxy‐substituted derivative ( O‐DPD ) exhibited significant photoinitiation activity in photo‐DSC experiments. Steady state photolysis experiments showed decreased decomposition rates with increasing donor capability. A dimethylamino derivative N‐DPD was even photostable under these conditions. Because of to the D‐π‐A‐π‐D system of these compounds two‐photon induced 3D photopolymerization experiments were performed and N‐DPD showed outstanding performance compared to often applied single photon initiators. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3280–3291, 2007  相似文献   

12.
A novel fluorinated aromatic dianhydride, 4,4′‐[2,2,2‐trifluoro‐1‐(3‐trifluoromethyl‐phenyl)ethylidene]diphthalic anhydride (TFDA) was synthesized by coupling of 3′‐trifluoromethyl‐2,2,2‐trifluoroacetophenone with o‐xylene under the catalysis of trifluoromethanesulfonic acid, followed by oxidation of KMnO4 and dehydration. A series of fluorinated aromatic polyimides derived from the novel fluorinated aromatic dianhydride TFDA with various aromatic diamines, such as p‐phenylenediamine (p‐PDA), 4,4′‐oxydianiline (ODA), 1,4‐bis(4‐aminophenoxy)benzene (p‐APB), 1,3‐bis(4‐amino‐phenoxy)benzene (m‐APB), 4‐(4‐aminophenoxy)‐3‐trifluoromethylphenylamine (3FODA) and 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene (6FAPB), were prepared by polycondensation procedure. All the fluorinated polyimides were soluble in many polar organic solvents such as NMP, DMAc, DMF, and m‐cresol, as well as some of low boiling point organic solvents such as CHCl3, THF, and acetone. Homogeneous and stable polyimide solutions with solid content as high as 35–40 wt % could be achieved, which were prepared by strong and flexible polyimide films or coatings. The polymer films have good thermal stability with the glass transition temperature of 232–322 °C, the temperature at 5% weight loss of 500–530 °C in nitrogen, and have outstanding mechanical properties with the tensile strengths of 80.5–133.2 MPa as well as elongations at breakage of 7.1–12.6%. It was also found that the polyimide films derived from TFDA and fluorinated aromatic diamines possess low dielectric constants of 2.75–3.02, a low dissipation factor in the range of 1.27–4.50 × 10?3, and low moisture absorptions <1.3%. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4143–4152, 2004  相似文献   

13.
Poly(isoprene) (PI) with pendant functional groups was successfully synthesized by thiol‐ene addition reaction under 365 nm UV irradiation, and the functionalized PI was further modified and used to prepare graft copolymers with “V”‐shaped side chains. First, the pendant ? SCH2CH(OH)CH2OH groups were introduced to PI by thiol‐ene addition reaction between 1‐thioglycerol and double bonds, and the results showed that the addition reaction carried out only on double bonds of 1,2‐addition isoprene units. After the esterification of hydroxyl groups by 2‐bromoisobutyryl bromide, the forming macroinitiator was used to initiate the atom transfer radical polymerization (ATRP) of styrene (St) and tert‐butyl acrylate (tBA), and the graft copolymers PI‐g‐PS 2 and PI‐g‐PtBA 2 or PI‐g‐PAA 2 (by hydrolysis of PI‐g‐PtBA 2) were obtained, respectively. It was confirmed that the graft density of side chains on PI main chains could be easily controlled by variation of the contents of modified 1,2‐addition isoprene units on PI. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3797–3806, 2010  相似文献   

14.
In a continuation of our research on new chromophores for photoinitiators (PIs), we investigated a triple‐bond‐containing benzophenone derivative. 1,5‐Diphenyl‐1,4‐pentadiyn‐3‐one ( 2 ) was prepared from phenylacetylene and ethyl formate by a one‐pot reaction. Differential scanning photocalorimetry experiments in lauryl acrylate of 2 showed surprisingly high activity for the double‐bond conversion and rate of polymerization at the lowest PI concentrations and even without any coinitiator. By the application of monomers with abstractable hydrogens, significant improvement in the photoreactivity was observed. Ultraviolet–visible spectroscopy revealed strong absorption up to 350 nm. Steady‐state photolysis experiments proved that the photochemistry of this compound was faster than that of benzophenone. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 101–111, 2005  相似文献   

15.
A series of organosoluble aromatic polyimides (PIs) was synthesized from 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐4,7‐methanohexahydroindan (3) and commercial available aromatic dianhydrides such as 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride (ODPA), 4,4′‐sulfonyl diphthalic anhydride (SDPA), or 2,2′‐bis(3,4‐dicarboxyphenyl) hexafluoropropanic dianhydride (6FDA). PIs (IIIc–f), which were synthesized by direct polymerization in m‐cresol, had inherent viscosities of 0.83–1.05 dL/g. These polymers could easily be dissolved in N,N′‐dimethylacetamide (DMAc), N‐methyl‐2‐pyrrolidone (NMP), N,N‐dimethylformamide (DMF), pyridine, m‐cresol, and dichloromethane. Whereas copolymerization was proceeded with equivalent molar ratios of pyromellitic dianhydride (PMDA)/6FDA, 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA)/6FDA, or BTDA/SDPA, or ½ for PMDA/SDPA, copolyimides (co‐PIs), derived from 3 and mixed dianhydrides, were soluble in NMP. All the soluble PIs could form transparent, flexible, and tough films, and they showed amorphous characteristics. These films had tensile strengths of 88–111 MPa, elongations at break of 5–10% and initial moduli of 2.01–2.67 GPa. The glass transition temperatures of these polymers were in the range of 252–311°C. Except for IIIe, the 10% weight loss temperatures (Td) of PIs were above 500°C, and the amount of carbonized residues of the PIs at 800°C in nitrogen atmosphere were above 50%. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1681–1691, 1999  相似文献   

16.
Nitroxide‐mediated radical polymerization (NMRP) of 2‐(dimethylamino)ethyl acrylate (DMAEA) was carried out at 100–120 °C, initiated by MONAMS, an alkoxyamine based on Ntert‐butyl‐N‐(1‐diethyl phosphono‐2,2‐dimethylpropyl)nitroxide, SG1. Controlled polymerization can be achieved by the addition of free SG1 (the initial molar ratio of SG1 to MONAMS ranged from 0.06 to 0.12), giving a linear first‐order kinetic plot up to 55–70% conversion depending on the reaction conditions. The molecular weights show a near linear increase with conversion; however, they deviate to some extent with theoretical values. SG1‐mediated polymerization of DMAEA at 112 °C is also controlled in organic solvents (N,N‐dimethylformide, anisole, xylene). Polymerization rate increases with increasing solvent polarity. Chain transfer to polymer produces ~1 mol % branches in bulk and 1.2–1.9 mol % in organic solvents, typical of those for acrylates. From poly(styrene) (pS) and poly(n‐butyl acrylate) (pBA) macroinitiators, amphiphilic di‐ and triblock copolymers p(S‐b‐DMAEA), p(DMAEA‐b‐S‐b‐DMAEA), p(BA‐b‐DMAEA), and p(DMAEA‐b‐BA‐b‐DMAEA) were synthesized via NMRP at 110 °C. Polymers were characterized by GPC, NMR, surface tension measurements, and DSC. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 414–426, 2006  相似文献   

17.
A series of donor‐π‐acceptor (D‐π‐A) conjugated copolymers ( PBDT‐AT, PDTS‐AT, PBDT‐TT , and PDTS‐TT ), based on benzo[1,2‐b:4,5‐c']dithiophene‐4,8‐dione (BDD) acceptor unit with benzodithiophene (BDT) or dithienosilole (DTS) as donor unit, alkylthiophene (AT) or thieno[3,2‐b]thiophene (TT) as conjugated π‐bridge, were designed and synthesized for application as donor materials in polymer solar cells (PSCs). Effects of the donor unit and π‐bridge on the optical and electrochemical properties, hole mobilities, and photovoltaic performance of the D‐π‐A copolymers were investigated. PSCs with the polymers as donor and PC70BM as acceptor exhibit an initial power conversion efficiency (PCE) of 5.46% for PBDT‐AT , 2.62% for PDTS‐AT , 0.82% for PBDT‐TT , and 2.38% for PDTS‐TT . After methanol treatment, the PCE was increased up to 5.91%, 3.06%, 1.45%, and 2.45% for PBDT‐AT, PDTS‐AT, PBDT‐TT , and PDTS‐TT , respectively, with significantly increased FF. The effects of methanol treatment on the photovoltaic performance of the PSCs can be ascribed to the increased and balanced carrier transport and the formation of better nanoscaled interpenetrating network in the active layer. The results indicate that both donor unit and π‐bridge are crucial in designing a D‐π‐A copolymer for high‐performance photovoltaic materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1929–1940  相似文献   

18.
The synthesis of new 7‐membered diazepanone alkoxyamines [2,2,7,7‐tetramethyl‐1‐(1‐phenyl‐ethoxy)‐[1,4]diazepan‐5‐one ( 3 ) and 2,7‐diethyl‐2,3,7‐trimethyl‐1‐(1‐phenyl‐ethoxy)‐[1,4]diazepan‐5‐one ( 8 )] through the Beckmann rearrangement of piperidin‐4‐one alkoxyamines was developed. Both 3 and 8 were evaluated as initiators and regulators for the nitroxide‐mediated radical polymerization of styrene and n‐butyl acrylate. 8 , a sterically highly hindered alkoxyamine readily available as a crystalline solid, allowed the fast and controlled polymerization and preparation of polymers with low polydispersity indices (1.2–1.4) up to a degree of polymerization of about 100. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3332–3341, 2004  相似文献   

19.
Several N‐(substituted phenyl) citraconimides containing phenolic hydroxyl groups (I) were prepared. I were esterified with acryloyl chloride producing the corresponding acrylate esters (II). II were free radically polymerized yielding linear polyacrylates (III). The citraconimidyl vinyls did not participate in the polymerization. The resulting polymers (III) were cured thermally or through the crosslinking agent N,N‐(p‐phenylene)dimaleimide. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 427–433, 1999  相似文献   

20.
Well‐defined poly(3‐alkyl‐4‐benzamide) was synthesized by means of chain‐growth condensation polymerization of phenyl 3‐octyl‐4‐(4‐octyloxybenzyl(OOB)amino)benzoate ( 1c ) from initiator 2 , followed by removal of the OOB groups on amide nitrogen of poly 1c . Polymerization of 1c with phenyl 4‐(trifluoromethyl)benzoate ( 2b ) in the presence of 1,1,1,3,3,3‐hexamethyldisilazide (LiHMDS) and LiCl in THF at ?10 °C gave poly 1c with a narrow molecular weight distribution (Mw/Mn ≤ 1.08) and a well‐defined molecular weight (Mn = 4480–12,700) determined by the feed ratio of monomer to initiator (from 10 to 30). The OOB groups of poly 1c were removed with H2SO4 to give the corresponding N‐unsubstituted poly(p‐benzamide) (poly 1c′ ) with low polydispersity. The solublity of poly 1c′ in polar organic solvents was dramatically higher than that of poly(p‐benzamide), demonstrating that introduction of an alkyl group on the aromatic ring is very effective for improving the solubility of poly(p‐benzamide). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 360–365  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号