首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unseeded semibatch emulsion polymerization of butyl acrylate (BA) using sodium lauryl sulfate as emulsifier and potassium persulfate as initiator was carried out at the conditions where secondary nucleation was probable. This was achieved by using no emulsifier in the initial reactor charge. The effects of changes in monomer emulsion feed rate, initiator concentration and distribution, emulsifier concentration in the feed, and temperature on the evolution of particle size averages and distribution were investigated. Bimodal particle size distributions (PSD) were obtained for most of the latexes. Inhibition effects were found to be important in the development of PSD. Primary particle formation occurred through micellar nucleation, whereas secondary nucleation probably occurred through homogenous nucleation. The polydispersity index (PDI) of the latexes increased with the decreasing monomer emulsion feed rate. The application of a larger amount of initiator to the reactor charge or using a higher temperature, reduced the formation of secondary particles and resulted in a formation of an unimodal PSD. The overall steady‐state rate of polymerization was found to approach the rate of monomer addition (RpRa ), if the emulsifier concentration in the aqueous phase was appreciable. This is different from the correlation 1/Rp = 1/K + 1/Ra obtained for the BA semibatch process with neat monomer feed. This suggests that different rate expressions can be used for BA semibatch emulsion polymerization at different conditions. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 528–545, 2000  相似文献   

2.
Mechanisms and simulations of the induction period and the initial polymerization stages in the nitroxide‐mediated autopolymerization of styrene are discussed. At 120–125 °C and moderate 2,2,4,4‐tetramethyl‐1‐piperidinyloxy (TEMPO) concentrations (0.02–0.08 M), the main source of radicals is the hydrogen abstraction of the Mayo dimer by TEMPO [with the kinetic constant of hydrogen abstraction (kh)]. At higher TEMPO concentrations ([N?] > 0.1 M), this reaction is still dominant, but radical generation by the direct attack against styrene by TEMPO, with kinetic constant of addition kad, also becomes relevant. From previous experimental data and simulations, initial estimates of kh ≈ 1 and kad ≈ 6 × 10?7 L mol?1 s?1 are obtained at 125 °C. From the induction period to the polymerization regime, there is an abrupt change in the dominant mechanism generating radicals because of the sudden decrease in the nitroxide radicals. Under induction‐period conditions, the simulations confirm the validity of the quasi‐steady‐state assumption (QSSA) for the Mayo dimer in this regime; however, after the induction period, the QSSA for the dimer is not valid, and this brings into question the scientific basis of the well‐known expression kth[M]3 (where [M] is the monomer concentration and kth is the kinetic constant of autoinitiation) for the autoinitiation rate in styrene polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6962‐6979, 2006  相似文献   

3.
The influence of butyl acrylate (BA) and methyl methacrylate (MMA) on hydroxyl functionalized latexes was investigated. The hydrophobicity of the monomer feed was varied via the BA/MMA ratio. In addition to monitoring the effect of hydrophobic monomer feed on secondary nucleation, the polymerization kinetics and final latex properties were also obtained for comparison. Five different BA to MMA molar ratios were combined with five 2‐hydroxyethyl methacrylate (HEMA) concentrations (0, 10, 20, 30 and 40 mol% in monomer composition). All latexes were synthesized through seeded semibatch emulsion polymerization process. Particle size distributions and average particle sizes of the latexes were determined by dynamic light scattering (DLS) and qualitatively compared with transmission electron microscope (TEM) images. The BA to MMA ratio significantly influences the boundary HEMA concentration at which homogeneous secondary nucleation occurs. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2190–2202  相似文献   

4.
The effect of cosurfactant and initiator concentration on the ab initio production of nanolatexes using low surfactant levels was investigated. While the use of cosurfactants (acrylic acid and pentanol) increased the amount of monomer that can be used in styrene‐SDS microemulsion formulations to 13 wt %, high surfactant concentrations are still required, resulting in polymer‐to‐surfactant ratios (Pol/Surf) <1. Latexes with particle size of 30 ± 5 nm were produced upon polymerization of these microemulsions. The Pol/Surf can be significantly increased by increasing the initiator concentration of emulsion polymerization recipes. Particle sizes are comparable with microemulsion latexes, however, less surfactant is required. The reduction in the particle size with higher initiator concentration is attributed to a higher efficiency of particle nucleation and to a higher nucleation rate relative to the rate of monomer transfer. Nanolatexes (particle size < 30 nm) were obtained with 19 wt % solids content and Pol/Surf of 3.6 in ab initio. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
The controlled free‐radical homopolymerization of n‐butyl acrylate was studied in aqueous miniemulsions at 112 and 125 °C with a low molar mass alkoxyamine unimolecular initiator and an acyclic β‐phosphonylated nitroxide mediator, Ntert‐butyl‐N‐(1‐diethylphosphono‐2,2‐dimethylpropyl) nitroxide, also called SG1. The polymerizations led to stable latices with 20 wt % solids and were obtained with neither coagulation during synthesis nor destabilization over time. However, in contrast to latices obtained via classical free‐radical polymerization, the average particle size of the final latices was large, with broad particle size distributions. The initial [SG1]0/[alkoxyamine]0 molar ratio was shown to control the rate of polymerization. The fraction of SG1 released upon macroradical self‐termination was small with respect to the initial alkoxyamine concentration, indicating a very low fraction of dead chains. Average molar masses were controlled by the initial concentration of alkoxyamine and increased linearly with monomer conversion. The molar mass distribution was narrow, depending on the initial concentration of free nitroxide in the system. The initiator efficiency was lower than 1 at 112 °C but was very significantly improved when either a macroinitiator was used at 112 °C or the polymerization temperature was raised to 125 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4410–4420, 2002  相似文献   

6.
Slow initiation relative to propagation has previously prevented photodimers of 9‐bromoanthracene or 9‐chloroanthracene, formed by [4 + 4] photocyclization reactions of the analogous 9‐haloanthracene, from being viable initiators in atom transfer radical polymerization (ATRP) reactions. The resulting polymers were found to possess high polydispersity index (PDI) values, much higher than expected number average molecular weight (Mn) values, with the reaction displaying a nonlinear relationship between monomer conversion and Mn. We report here the use of silane radical atom abstraction (SRAA) to create initiating bridgehead radicals in the presence of 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) to mediate the polymerization. When using SRAA coupled with nitroxide mediated polymerization, a dramatic decrease in PDI values was observed compared with analogous ATRP reactions, with Mn values much closer to those anticipated based on monomer‐to‐initiator ratios. Analysis using UV‐Vis spectroscopy indicated only partial anthracene labeling (~ 25%) on the polymers, consistent with thermolysis of the anthracene photodimer coupled with competition between initiation from the bridgehead photodimer radical and silane‐based radical. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6016–6022, 2008  相似文献   

7.
The semicontinuous polymerization of methyl methacrylate (MMA) in heterogeneous medium under monomer‐starved conditions is reported here. The effect of monomer addition rate on kinetics, particle size, particle number, and PMMA average molar masses are reported. This process permits the synthesis of high‐solid content latexes containing nano‐sized particles (<40 nm) with narrow particle size distributions [(Dw/Dn) < 1.1]. Moreover, the molar masses (Mn ≈ 0.3–1.2 × 106 g/mol) are much lower than those expected by chain transfer to monomer, which is the typical termination mechanism in 0–1 emulsion and microemulsion reactions. Both particle size and average molar masses decrease as the rate of monomer addition is diminished. Possible explanations for this process are provided. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1463–1473, 2007  相似文献   

8.
Monodisperse latex particles with surface amino groups were prepared by a two‐step emulsion polymerization. In the first step, the seeds were synthesized by batch emulsion polymerization of styrene; and in the second step, two different amino‐functionalized monomers [aminoethylmethacrylate hydrochloride (AEMH) and vinylbenzylamine hydrochloride (VBAH)], two different initiator systems (K2S2O8 and K2S2O8/Na2S2O5) and mixtures of emulsifiers sodium dodecylsulfate (SDS) and Tween 21 were used to synthesize the final latexes. To characterize the final latexes, conversions were obtained gravimetrically and particle size distributions and average particle diameters were determined by transmission electron microscopy (TEM) and photon correlation spectroscopy (PCS). The amount of amino groups was determined by the SPDP (N‐succinimidyl 3‐(2‐pyridyldithio)propionate) method. The influence of the different conditions used to synthesize the latexes on the colloidal stability of the particles was evaluated by measuring the diameters of the final latexes dispersed in solutions at different pHs and ionic strengths. The most stable latexes were obtained using the smallest seed, VBAH monomer, and the K2S2O8/Na2S2O5 initiator system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4230–4237, 2000  相似文献   

9.
The amphiphilic A2B star‐shaped copolymers of polystyrene‐b‐[poly(ethylene oxide)]2 (PS‐b‐PEO2) were synthesized via the combination of atom transfer nitroxide radical coupling (ATNRC) with ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP) mechanisms. First, a novel V‐shaped 2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐PEO2 (TEMPO‐PEO2) with a TEMPO group at middle chain was obtained by ROP of ethylene oxdie monomers using 4‐(2,3‐dihydroxypropoxy)‐TEMPO and diphenylmethyl potassium as coinitiator. Then, the linear PS with a bromine end group (PS‐Br) was obtained by ATRP of styrene monomers using ethyl 2‐bromoisobutyrate as initiator. Finally, the copolymers of PS‐b‐PEO2 were obtained by ATNRC between the TEMPO and bromide groups on TEMPO‐PEO2 and PS‐Br, respectively. The structures of target copolymers and their precursors were all well‐defined by gel permeation chromatographic and nuclear magnetic resonance (1H NMR). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
The photoinduced solution polymerization of 4‐methacryloyl‐1,2,2,6,6‐pentamethyl‐piperidinyl (MPMP), used as a reactive hindered amine piperidinol derivative, was performed. The obtained MPMP homopolymer had a very narrow molecular weight distribution (1.06–1.39) according to gel permeation chromatography. The number‐average and weight‐average molecular weights increased linearly with the monomer conversion, this being characteristic of controlled/living free‐radical polymerizations. Electron spin resonance signals were detected in the MPMP homopolymer and in a polymer mixture solution, and they were assigned to nitroxide radicals, which were bound to the polymer chains and persisted at a level of 10?9 mol/L during the polymerization. Instead of the addition of mediated nitroxide radicals such as 2,2,6,6‐tetramethyl‐piperidinyl‐1‐oxy (TEMPO), those radicals (>N? O ·) were formed in situ during the photopolymerization of MPMP, and so the reaction mechanism was understood as being similar to that of TEMPO‐mediated controlled/living free‐radical polymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2659–2665, 2004  相似文献   

11.
12.
A versatile strategy for the preparation of end‐functional polymers and block copolymers by radical exchange reactions is described. For this purpose, first polystyrene with 2,2,6,6‐tetramethylpiperidine‐1‐oxyl end group (PS‐TEMPO) is prepared by nitroxide‐mediated radical polymerization (NMRP). In the subsequent step, these polymers are heated to 130 °C in the presence of independently prepared TEMPO derivatives bearing hydroxyl, azide and carboxylic acid functionalities, and polymers such as poly(ethylene glycol) (TEMPO‐PEG) and poly(ε‐caprolactone) (TEMPO‐PCL). Due to the simultaneous radical generation and reversible termination of the polymer radical, TEMPO moiety on polystyrene is replaced to form the corresponding end‐functional polymers and block copolymers. The intermediates and final polymers are characterized by 1H NMR, UV, IR, and GPC measurements. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2387–2395  相似文献   

13.
Particle formation and coagulation in the seeded semibatch emulsion polymerization of butyl acrylate were studied under monomer‐starved conditions. To investigate the importance of the kinetics of the water phase in the nucleation process, the monomer feed rate was used as a variable to alter the monomer concentration in the aqueous phase. The emulsifier concentration in the feed was employed to alter the particle stability. Particle formation and coagulation were discussed in terms of critical surface coverage ratios. Particle coagulation occurred if the particle surface coverage dropped below θcr1 = 0.25 ± 0.05. The secondary nucleation occurred above a critical surface coverage of θcr2 = 0.55 ± 0.05. The number of particles remained approximately constant if the particle surface coverage was within θcr1 = 0.25 < θ < θcr2 = 0.55. This surface coverage band is equivalent to the surface tension band of 42.50 ± 5.0 dyne/cm that is required to avoid particle formation and coagulation in the course of polymerization. The kinetics of the water phase was shown to play an important role during homogeneous and micellar nucleations. For any fixed emulsifier concentration in the feed and above θcr2, the number of secondary particles increased with monomer concentration in the aqueous phase. Moreover, the presence of micelles in the reaction vessel is not the only perquisite for micellar nucleation to occur, a sufficient amount of monomer should be present in the aqueous phase to enhance the radical capture by partially monomer‐swollen micelles. The rate of polymerization increased with the surfactant concentration in the aqueous phase. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3612–3630, 2000  相似文献   

14.
Magnetic ionic liquid monomers were synthesized and then polymerized to get magnetic polymer latexes and films. First, a series of 1‐vinyl‐3‐dodecyl‐imidazolium monomers having metal halides counter‐anions such as FeCl3Br?, CoCl2Br?, and MnCl2Br? were synthesized. These ionic liquid monomers were first homopolymerized to lead to magnetic poly(ionic liquids) and characterized. Secondly, magnetic latexes were synthesized by using the magnetic ionic liquids as surfmers (surfactant + monomer) in the emulsion polymerization of methyl methacrylate/n‐butyl acrylate. It was found that the powders obtained by freeze‐drying the latexes presented a paramagnetic behavior with weak antiferromagnetic interactions between the adjacent metal ions. Although the ratio of magnetic ionic liquid/monomer was only 2% these poly(methyl methacrylate‐co‐butyl acrylate) powders and latexes responded to a magnetic field due to the surfmer paramagnetic nature. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1145–1152  相似文献   

15.
A mathematical model has been developed to describe the interfacial mass transfer of TEMPO in a nitroxide‐mediated miniemulsion polymerization (NMMP) system in the absence of chemical reactions. The model is used to examine how the diffusivity of TEMPO in the aqueous and organic droplet phases, the average droplet diameter and the nitroxide partition coefficient influences the time required for the nitroxide to reach phase equilibrium under non‐steady state conditions. Our model predicts that phase equilibrium is achieved quickly (< 1 × 10−4 s) in NMMP systems under typical polymerization conditions and even at high monomer conversions when there is significant resistance to molecular diffusion. The characteristic time for reversible radical deactivation by TEMPO was found to be more than ten times greater than the predicted equilibration times, indicating that phase equilibrium will be achieved before TEMPO has an opportunity to react with active polymer radicals. However, significantly longer equilibration times are predicted, when average droplet diameters are as large as those typically found in emulsion and suspension polymerization systems, indicating that the aqueous and organic phase concentrations of nitroxide may not always be at phase equilibrium during polymerization in these systems.

Influence of droplet phase TEMPO diffusivity, DTEMPO,drop, on the predicted organic phase concentration of TEMPO.  相似文献   


16.
Novel multigraft copolymers of poly(methyl methacrylate‐graft‐polystyrene) (PMMA‐g‐PS) in which the number of graft PS side chains was varied were prepared by a subsequent two‐step living radical copolymerization approach. A polymerizable 4‐vinylbezenyl 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) monomer (STEMPO), which functioned as both a monomer and a radical trapper, was placed in a low‐temperature atom transfer radical polymerization (60°C) process of methyl methacrylate with ethyl 2‐bromopronionate (EPNBr) as an initiator to gain ethyl pronionate‐capped prepolymers with TEMPO moieties, PMMA‐STEMPOs. The number of TEMPO moieties grafted on the PMMA backbone could be designed by varying STEMPO/EPNBr, for example, the ratios of 1/2, 2/3, or 3/4 gained one, two, or three graft TEMPO moieties, respectively. The resulting prepolymers either as a macromolecular initiator or a trapper copolymerized with styrene in the control of stable free‐radical polymerization at an elevated temperature (120 °C), producing the corresponding multigraft copolymers, PMMA‐g‐PSs. The nitroxyl‐functionalized PMMA prepolymers produced a relatively high initiation efficiency (>0.8) as a result of the stereohindrance and slow diffusion of TEMPO moieties connected on the long PMMA backbone. The polymerization kinetics in two processes showed a living radical polymerization characteristic. The molecular structures of these prepolymers and graft copolymers were well characterized by combining Fourier transform infrared spectroscopy, gel permeation chromatography, chemical element analysis, and 1H NMR. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1876–1884, 2002  相似文献   

17.
Supercritical carbon dioxide (scCO2) is an inexpensive and environmentally friendly medium for radical polymerizations. ScCO2 is suited for heterogeneous controlled/living radical polymerizations (CLRPs), since the monomer, initiator, and control reagents (nitroxide, etc.) are soluble, but the polymer formed is insoluble beyond a critical degree of polymerization (Jcrit). The precipitated polymer can continue growing in (only) the particle phase giving living polymer of controlled well‐defined microstructure. The addition of a colloidal stabilizer gives a dispersion polymerization with well‐defined colloidal particles being formed. In recent years, nitroxide‐mediated polymerization (NMP), atom transfer radical polymerization (ATRP), and reversible addition fragmentation chain transfer (RAFT) polymerization have all been conducted as heterogeneous polymerizations in scCO2. This Highlight reviews this recent body of work, and describes the unique characteristics of scCO2 that allows composite particle formation of unique morphology to be achieved. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3711–3728, 2009  相似文献   

18.
Research into nitroxide‐mediated radical polymerization (NMRP) performed in emulsions and miniemulsions has progressed significantly over the past several years. However, our knowledge of the conditions during polymerization (e.g., the nitroxide concentrations in the aqueous and organic phases) is incomplete, and as such we have yet to achieve a clear understanding of the mechanisms involved in these processes. To better understand the conditions present in heterogeneous NMRP, we measured the partition coefficients of 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy (TEMPO), 4‐hydroxy‐TEMPO, and 4‐amino‐TEMPO between styrene and water from 25 to 135 °C. Experiments were performed in a 250‐mL Parr reactor that was equipped for the simultaneous sampling of the aqueous and organic phases. Aqueous‐phase and organic‐phase nitroxide concentrations were measured with ultraviolet–visible spectrophotometry. Experiments were also performed at 135 °C in the presence of hexadecane (costabilizer), polystyrene, and sodium dodecylbenzenesulfonate (surfactant) to determine the effects of the miniemulsion polymerization recipe ingredients on the partitioning of TEMPO and 4‐hydroxy‐TEMPO. On the basis of the measured partition coefficients (expressed as the ratio of the nitroxide concentration in the organic phase to the nitroxide concentration in the aqueous phase), 4‐hydroxy‐TEMPO was the most hydrophilic of the nitroxides investigated, followed by 4‐amino‐TEMPO and TEMPO. Hexadecane, polystyrene, and sodium dodecylbenzenesulfonate did not have a significant influence on the partitioning of these nitroxides at 135 °C. Experiments with ethylbenzene instead of styrene demonstrated that thermally generated radicals were not responsible for the observed temperature effects on the measured partition coefficients. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1081–1089, 2001  相似文献   

19.
In this study, we report the use of a double‐headed dialkoxyamine trithiocarbonate ( I ) capable of acting as chain transfer agent via reversible addition‐fragmentation chain transfer polymerization or as initiator via nitroxide‐mediated polymerization. It is worth mentioning that I was revealed as an effective dual chain transfer agent in the synthesis of multiblock copolymers via bulk and emulsion processes. In this article, we report the employing of I in dispersed systems to obtain amphiphilic multiblock copolymers and latexes. In this case, a water soluble macroagent of PAA previously synthetized was used in disperse media using a mixture of methanol/water (70:30, w/w). Stable latexes were obtained via polymerization‐induced self‐assembly and surface‐initiated polymerization of SSNa from alkoxyamine‐functionalized latex PAA‐b‐PS‐b‐PAA was also obtained © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 437–444  相似文献   

20.
Particle formation and particle growth compete in the course of an emulsion polymerization reaction. Any variation in the rate of particle growth, therefore, will result in an opposite effect on the rate of particle formation. The particle formation in a semibatch emulsion polymerization of styrene under monomer‐starved conditions was studied. The semibatch emulsion polymerization reactions were started by the monomer being fed at a low rate to a reaction vessel containing deionized water, an emulsifier, and an initiator. The number of polymer particles increased with a decreasing monomer feed rate. A much larger number of particles (within 1–2 orders of magnitude) than that generally expected from a conventional batch emulsion polymerization was obtained. The results showed a higher dependence of the number of polymer particles on the emulsifier and initiator concentrations compared with that for a batch emulsion polymerization. The size distribution of the particles was characterized by a positive skewness due to the declining rate of the growth of particles during the nucleation stage. A routine for monomer partitioning among the polymer phase, the aqueous phase, and micelles was developed. The results showed that particle formation most likely occurred under monomer‐starved conditions. A small average radical number was obtained because of the formation of a large number of polymer particles, so the kinetics of the system could be explained by a zero–one system. The particle size distribution of the latexes broadened with time as a result of stochastic broadening associated with zero–one systems. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3940–3952, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号