首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and reactivity of a tetrahydrochromeno[2,3‐b]indoles are reported. Evidence for reversible ring‐opening is based on H/D exchange and trapping experiments. These compounds readily undergo reaction with tetra‐n‐butylammonium cyanide. The cyanide reaction is 10–100× faster when the solution is irradiated with 350 nm light. Reaction with trimethylsilyl cyanide occurs only with UV irradiation demonstrating photoreactivity. The rate of tetrahydrochromeno[2,3‐b]indole ring‐opening is greater for (i) Me substitution at the hemiaminal carbon (compared to Ph), and (ii) substitution of fluorine at the 9‐position of the indole. Under acidic conditions, the ring‐opened indolium ion is observed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
In this work, a detailed study of the structural, electronic, and absorption properties of crystalline 7,2′‐anhydro‐β‐d ‐arabinosylorotidine (Cyclo ara‐O) in the pressure range of 0–350 GPa is performed by density functional theory calculations. The detail analysis of the crystal with increasing pressure shows that complex transformations occur in Cyclo ara‐O under compression. In addition, the b‐direction is much stiffer than the a‐ and c‐axis at 0–330 GPa, suggesting that the Cyclo ara‐O crystal is anisotropic in the certain pressure region. In the pressure range of 110–290 GPa, repeated formations and disconnections of covalent bonds in O7–O6* and C3–C6* occur several times, resulting in a new six‐atom ring that forms at 220, 270, and 290 GPa, while a five‐atom ring and seven‐atom ring form between two adjacent molecules at 300 and 340 GPa, respectively. Then, the analysis of the band gap and DOS (PDOS) of Cyclo ara‐O indicates that its electronic character has changed at 300 GPa into an excellent insulator, but the electron transition is much easier at 350 GPa. Moreover, the relatively high optical activity with the pressure increases of Cyclo ara‐O is seen from the absorption spectra, and two obvious structural transformations are also observed at 180 and 230 GPa, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
NMR and GC/MS spectroscopy of the organic extracts of the oscillatory bromate‐1,4‐cyclohexanedione reaction illustrate the presence of ring‐opening products 5‐(dibromomethylene)‐2(5H)‐furanone, (E)‐5,5,5‐tribromo‐4‐oxo‐2‐pentenoic acid, and dibromoacetic acid, particularly at elevated temperatures. The loss of a carbon atom from the six‐membered ring after ring opening led to gas formation and such a process became more vigorous at >60 °C, with the direct observation of bubbles in a stirred batch reactor. Gravimetric experiments confirm that the amount of carbon dioxide gas produced increases rapidly with reaction temperature. Parallel experiments suggest that the ring‐opening process involves the oxidation of brominated benzoquinones by bromate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, the effects of laser irradiation on fused silica at 355 nm are investigated by using transient absorption spectroscopy and luminescence spectroscopy. Our result shows that no transient absorption or luminescence in the spectra range from 400 nm to 600 nm is observed when laser energy density is below the damage threshold. When the laser energy density reaches the threshold, an initial damage site will be created. After subsequent laser pulses irradiation, the damage size grows. At the same time, the intensity of the transient absorption and luminescence spectra at the damage site also raises remarkably with the laser pulse number increasing. The absorption band from 420 nm to 520 nm is probably related to the absorption of impurity such as metal ion of iron, cerium and copper. Laser modified fused silica exhibits intense broad luminescence bands due to oxygen-deficiency centers at 444 nm and 580 nm.  相似文献   

5.
We describe quantum‐size and binding‐site effects on the chemical and local field enhancement mechanisms of surface‐enhanced resonance Raman scattering (SERRS), in which the pyridine molecule is adsorbed on one of the vertices of the Ag20 tetrahedron. We first investigated the influence of the binding site on normal Raman scattering (NRS) and excited state properties of optical absorption spectroscopy. Second, we investigated the quantum‐size effect on the electromagnetic (EM) and chemical mechanism from 300 to 1000 nm with charge difference density. It is found that the strong absorption at around 350 nm is mainly the charge transfer (CT) excitation (CT between the molecule and the silver cluster) for large clusters, which is the direct evidence for the chemical enhancement mechanism for SERRS; for a small cluster the strong absorption around 350 nm is mainly intracluster excitation, which is the direct evidence for the EM enhancement mechanism. This conclusion is further confirmed with the general Mie theory. The plasmon peak in EM enhancement will be red‐shifted with the increase of cluster size. The influence of the binding site and quantum‐size effects on NRS, as well as chemical and EM enhancement mechanisms on SERRS, is significant. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A density functional theory (DFT) study aimed at understanding structure–reactivity relationships in the oxidized metabolites of cyclopenta‐fused polycyclic aromatic hydrocarbons (CP‐PAHs) is reported. Epoxidation at various positions was examined in order to identify the most stable epoxide in each class of CP‐PAHs. Relative energies of the carbocations resulting from O‐protonation and epoxide ring opening were analyzed and compared, taking into account the available biological activity data on these compounds. Geometrical, electronic, and conformational issues were considered. Charge delocalization modes in the resulting carbocations were deduced via the natural population analysis (NPA)‐derived changes in charges. Computational results pointed to the importance of the unsaturated cyclopenta ring on the reactivity of these compounds. The reported bioactivity of this highly mutagenic/carcinogenic family of PAHs was observed to parallel their relative carbocation stabilities. A different behavior was observed in crowded non‐planar structures possessing a distorted aromatic system. A covalent adduct formed between a CP‐PAH epoxide and a purine base was computed inside a DNA fragment employing the ONIOM method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A new setup and commissioning of transient X‐ray absorption spectroscopy are described, based on the high‐repetition‐rate laser pump/X‐ray probe method, at the 1W2B wiggler beamline at the Beijing Synchrotron Radiation Facility. A high‐repetition‐rate and high‐power laser is incorporated into the setup with in‐house‐built avalanche photodiodes as detectors. A simple acquisition scheme was applied to obtain laser‐on and laser‐off signals simultaneously. The capability of picosecond transient X‐ray absorption spectroscopy measurement was demonstrated for a photo‐induced spin‐crossover iron complex in 6 mM solution with 155 kHz repetition rate.  相似文献   

8.
Dinuclear (Zn2, Ni2, and NiZn) complexes of fused salphen with acene‐type annelation were synthesized from 3,7‐diformyl‐2,6‐dihydroxynaphthalene. The spectroscopic properties of these complexes were compared with those of their constitutional isomers with phene‐type annelation. The acene‐type complexes exhibited a characteristic absorption band in the near‐infrared region that showed a noticeable solvent effect. Time‐dependent density functional theory calculations suggested that the absorption arose from a π → π* transition localized at the naphthalene ring, which was perturbed by the adjoining chelate rings. Effects of the connection topology in the fused salphen complexes are discussed by comparison with those of polycyclic aromatic hydrocarbons.  相似文献   

9.
Single‐crystal diamond is a material with great potential for the fabrication of X‐ray photon beam‐position monitors with submicrometre spatial resolution. Low X‐ray absorption combined with radiation hardness and excellent thermal‐mechanical properties make possible beam‐transmissive diamond devices for monitoring synchrotron and free‐electron laser X‐ray beams. Tests were made using a white bending‐magnet synchrotron X‐ray beam at DESY to investigate the performance of a position‐sensitive diamond device using radiofrequency readout electronics. The device uniformity and position response were measured in a 25 µm collimated X‐ray beam with an I‐Tech Libera `Brilliance' system. This readout system was designed for position measurement and feedback control of the electron beam in the synchrotron storage ring, but, as shown here, it can also be used for accurate position readout of a quadrant‐electrode single‐crystal diamond sensor. The centre‐of‐gravity position of the F4 X‐ray beam at the DORIS III synchrotron was measured with the diamond signal output digitally sampled at a rate of 130 Msample s?1 by the Brilliance system. Narrow‐band filtering and digital averaging of the position signals resulted in a measured position noise below 50 nm (r.m.s.) for a 10 Hz bandwidth.  相似文献   

10.
Electronic states and their energies are calculated for a mixed‐ligand Ir(III) compound, (5‐chloro‐8‐hydroxyquinoline) bis(2‐phenylpyridyl) iridium (called IrQ(ppy)2‐5Cl) using time‐dependent density functional theory (TDDFT) calculations and are compared with the experimental result. A good agreement is obtained between the calculated and measured absorption spectra. The d‐πQ* molecular orbital transition gives the lowest‐energy triplet state absorption band. Its energy is estimated as 1.84 eV (671 nm), which is close to the absorption band position of 1.86 eV (666 nm) observed for IrQ(ppy)2‐5Cl doped in 4,4′‐N,N′‐dicarbazole‐biphenyl (CBP) host and of 1.88 eV (660 nm) observed for IrQ(ppy)2‐5Cl doped in polystyrene (PS). The second triplet state absorption band is caused by d‐πppy transition. Its position is calculated as 2.51 eV (494 nm). The dipole moment is estimated as 3.45 D, which is lower than the dipole moment of fac‐Ir(ppy)3. This is understood by a reduced charge transfer between Ir(III) and quinoline ligand. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Laser flash photolysis‐time‐resolved infrared spectroscopy (LFP‐TRIR) was performed on an acetonitrile or dichloromethane solution of triarylphosphines, Ar3P, in air. A transient spectrum consisting of several absorption bands appeared in the region of 1050–1300 cm?1 on the TRIR on a microsecond timescale, which disappeared on a millisecond timescale. To identify the observed transient intermediate, the IR spectra of possible intermediates of the photoreaction were simulated by theoretical calculations based on density functional theory (DFT). The IR spectrum simulated for the phosphine peroxidic radical cation, Ar3P+OO?, well predicted the observed IR spectrum, showing that Ar3P+OO? is formed as a transient intermediate upon the LFP of Ar3P in air. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The UV–Vis spectrum of 5‐(1‐butylthio)‐3H‐1,2‐dithiole‐3‐thione (1a) and that of the chromium pentacarbonyl complex of 5‐methyl‐3H‐1,2‐dithiole‐3‐thione (3) present significant changes with the solvent polarity. The two absorption bands shown by the compounds in the region above 300 nm were identified by theoretical calculations. For Compound 1a these are n→π* and →π* transitions and for Compound 3 the longest wavelength absorption corresponds to a charge transfer band and shows a remarkably negative solvatochromism. Not only has the wavelength of maximum absorption changed with the solvent but also the ratio of the absorbances at the two wavelengths. The effect of solvents was correlated with solvatochromic parameters such as π* and α. The spectrum of 5‐(1‐butylthio)‐3H‐1,2‐dithiole‐3‐one ( 2 ) was also measured in different solvents but in this case the changes observed are less significant than for the other two compounds. The spectra of 1a and 3 were also determined in the presence of anionic (SDS), cationic (CTAB), and neutral surfactants (Brig‐35) and it is shown that these compounds can be used as probes for the polarity of the binding sites of organized assemblies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The optical properties of several azobenzene derivatives were modulated by varying the dipole moments and conjugation lengths of the D‐π‐A systems. The relationship between the structure and absorption spectrum and polarizability was studied in the gas phase, THF and MeOH solutions, respectively, by using the density functional theory. The calculated absorption spectra and second‐order polarizabilities are in good agreement with the available experimental observations. In comparison with the D‐π‐A monomer, the H‐shaped D‐π‐A dimer almost doubles the dipole moments and hence increases the second‐order polarizabilities, without a significant shift in the maximum absorption bands. The addition of another azobenzol group between electron‐donating and ‐accepting groups increases the second‐order polarizabilities by 4–6 times, but leads to an evident red‐shift of about 65–80 nm in spectra. The relative second‐order polarizability of the halogen‐substituted derivatives is in the sequence of ? CF3 > ? F > ? Cl > ? Br, without obvious substituent effects on the optical transparency. The D‐π‐A chromophores with the strong electron‐donating (amino) and ‐accepting (acetyl) substituent present the larger second‐order polarizabilities, at the cost of about 20 nm red‐shift of the maximum absorption lengths relative to the halogen‐substituted species. It is also demonstrated that both the linear and nonlinear optical properties augment with the increase in solvent polarity, accompanied by a red‐shift in the wavelengths of maximum absorption by about 18 and 23 nm, respectively, in THF and MeOH solutions. The changes in optical properties upon the structural modifications are further rationalized by the electronic structures of various H‐shaped dimers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The recent developments in X‐ray detectors have opened new possibilities in the area of time‐resolved pump/probe X‐ray experiments; this article presents the novel use of a PILATUS detector to achieve X‐ray pulse duration limited time‐resolution at the Advanced Photon Source (APS), USA. The capability of the gated PILATUS detector to selectively detect the signal from a given X‐ray pulse in 24 bunch mode at the APS storage ring is demonstrated. A test experiment performed on polycrystalline organic thin films of α‐perylene illustrates the possibility of reaching an X‐ray pulse duration limited time‐resolution of 60 ps using the gated PILATUS detector. This is the first demonstration of X‐ray pulse duration limited data recorded using an area detector without the use of a mechanical chopper array at the beamline.  相似文献   

15.
Liquid crystal nanoparticles (LCNPs) with desirable multifunctionality are catching increasing attention due to their promising applications in various fields. However, reversible photoswitchable fluorescent LCNPs are not reported until now. Here, the first example of water‐dispersible, reversibly phototunable fluorescent LCNPs prepared through a miniemulsion polymerization technique is presented. The LCNPs mainly consist of an aggregation‐induced emission enhancement (AIEE)‐active dicyanodistyrylbenzene‐based monomer, a LC cross‐linking monomer, and a dithienylethene (DAE) derivative as a photochromic molecular switch. The fluorescence of the resultant LCNPs can be switched reversibly between bright (ON) and dark (OFF) states with a high contrast and excellent repeatability upon alternating irradiation of 365 nm UV light and visible light (λ > 450 nm). This observation could be attributed to ring‐opening/ring‐closing photoisomerization of the DAE structure on the basis of an intraparticle fluorescence resonance energy transfer process between the AIEE‐active monomer and DAE derivative. More importantly, the potential for aqueous dispersion of the photoswitchable fluorescent LCNPs as a security ink for information encryption and anti‐counterfeiting is further demonstrated. The results demonstrate that the reversible photoswitchable fluorescent LCNPs as multifunctional nanomaterials exhibit promising applications in photonic fields.  相似文献   

16.
Computational studies are reported for reactions of 4‐substituted‐1‐chloro‐2,6‐dinitrobenzenes 1 , 6‐substituted‐1‐chloro‐2,4‐dinitrobenzenes 2 and some of the corresponding 1‐phenoxy derivatives 3 and 4 with aniline in the gas phase. The effects of substituent groups in the calculated energy values for reactants 1–4 , transition states structures, intermediates and products formed in the reactions between the compounds and anilines have been compared. Calculated bonds length and angles from optimized structures of the reactants were comparable with values reported for some of compounds 1–4 obtained by X‐ray crystal structures analysis. Generally, the decomposition of the Meisenheimer intermediate to the products requires more energy compared with the reactants except for when R = H. The order of stabilization of the intermediate was found to reflect the relative order of activation by substituents in the substrates. The 4‐substituted‐1‐chloro‐2,6‐dinitrobenzenes 1 and the phenoxy derivatives 3 were found to be more stable than their corresponding 6‐substituted analogues. This is an indication that the rate of nucleophilic attack at 1‐position will increase with increasing ring activation but may be reduced by steric repulsion at the reaction centre that increases in the order Cl < OPh. However, the steric hindrance to the steps involved in nucleophilic substitution by aniline is significantly increased when the substrates contain two ortho‐substituents. In most cases, the rate determining step is the decomposition of the σ‐adduct intermediate except with 1‐chloro‐2,6‐dinitrobenzenes 1 and 6‐substituted‐1‐chloro‐2,4‐dinitrobenzenes 2 , either because of reduction in ring activation or the presence of bulky ortho‐substituents in the chloro compounds 1 and 2 . Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
This paper reviews our results on femtosecond time‐resolved spectroscopy (transient absorption, transient‐grating and fluorescence spectroscopy) to study the photophysics and photochemistry of the two very important biological photoreceptor chromophores phycocyanobilin (PCB) and protochlorophyllide a (PChla). The compound PCB serves as a model chromophore for the photoreceptor phytochrome. By means of transient‐grating spectroscopy where the excitation wavelength was varied ove r the spectral region of the S0S1‐absorption the ultrafast processes were studied upon excitation with varying excess energy delivered to the system. On the basis of the results obtained, both the rate of the photoreaction in PCB and the rate of the decay of different excited‐state species via different decay channels depend on the excitation wavelength. Furthermore, transient absorption experiments illuminating the excited‐state dynamics of PChla, a porphyrin‐like compound and, as substrate of the NADPH/protochlorophyllide oxidoreductase (POR), a precursor of the chlorophyll biosynthesis are presented. In addition to pump‐energy‐dependent measurements performed with PChla dissolved in methanol, the excited‐state dynamics of PChla was interrogated in different solvents that were chosen to mimic different environmental conditions. In addition to the femtosecond time‐resolved absorption experiments the picosecond time‐resolved fluorescence of the system was studied. The transient absorption and tim e‐resolved fluorescence data allow suggesting a detailed model for the excited‐state relaxation of PChla describing the excited‐state processes in terms of a branching of the initially excited state population into a reactive and nonreactive path. Thus, the excited‐state potential energy surface exhibits two distinct S1 and Sx minima separated from the Franck–Condon region along two most likely orthogonal reaction coordinates. Finally, the model derived is related to models suggested to acco unt for the reduction of PChla to chlorophyllide a within the natural enzymatic environment of POR.  相似文献   

18.
The hydrolysis of 2‐chloro‐3,5‐dinitropyridine by sodium hydroxide in the presence of micelles of cetyltrimethylammonium bromide (CTABr), cetyltrimethylammonium chloride (CTACl) and sodium dodecyl sulfate (SDS) has been studied. The reaction follows a consecutive reaction path involving the formation of a long‐lived intermediate 3 and finally giving the product, 3,5‐dinitro 2‐pyridone 2 . The mechanism follows an addition of the nucleophile, ring opening and ring closure (ANRORC) reaction path. The rate constant was observed to be first‐order dependent on [OH?]. The rate of reaction increased on increasing [CTABr] and, after reaching to the maxima, it started decreasing. The anionic SDS micelles inhibited the rate of hydrolysis. The results of the kinetic experiments were treated with the help of the pseudophase ion exchange model and the Menger–Portnoy model. The added salts, viz. NaBr, Na‐toluene‐4‐sulphonate, and (CH3)4NBr on varying [CTACl] and [SDS] inhibited the rate of reaction. The various kinetic parameters in the presence and absence of salts were determined and are reported herewith. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Symmetric‐type carbazole derivatives show great potential for application in two‐photon absorption (TPA) materials and organic light‐emitting diodes. The absorption spectra and fluorescence emission spectra of three different N‐alkyl symmetric‐type carbazole derivatives were investigated. The density functional theory (DFT) time‐dependent‐DFT//Becke, three‐parameter, Lee–Yang–Parr/6‐31 G* method has been used to theoretically study one‐photon absorption properties. The computational results are in good agreement with the available experimental values. The two‐photon excited fluorescence of the compounds was surveyed by 120 fs pulse at 790 nm Ti: sapphire laser operating at 1 kHz repetition rate. Two‐photon excited fluorescence was obtained in the range of 380–600 nm, and TPA cross‐sections were calculated. The TPA properties of the series of compounds were investigated by the ZINDO/single and double electronic excitation configuration interaction method. The influence of the chemical structure of the compounds on two‐photon optical properties was discussed. The results show how the different changes in one‐photon absorption and TPA properties on the basis of lengthening the conjugated bridge and the different carbazole N‐alkyl substituents are attributed to the transition dipole moment in the excited process. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
A hard X‐ray scanning microscope installed at the Hard X‐ray Nanoprobe beamline of the National Synchrotron Light Source II has been designed, constructed and commissioned. The microscope relies on a compact, high stiffness, low heat dissipation approach and utilizes two types of nanofocusing optics. It is capable of imaging with ~15 nm × 15 nm spatial resolution using multilayer Laue lenses and 25 nm × 26 nm resolution using zone plates. Fluorescence, diffraction, absorption, differential phase contrast, ptychography and tomography are available as experimental techniques. The microscope is also equipped with a temperature regulation system which allows the temperature of a sample to be varied in the range between 90 K and 1000 K. The constructed instrument is open for general users and offers its capabilities to the material science, battery research and bioscience communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号