首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The radical copolymerization of vinylidene fluoride (VDF) with 4‐bromo‐1,1,2‐trifluorobut‐1‐ene (C4Br) was examined. This bromofluorinated alkene was synthesized in three steps, which started with the addition of bromine to chlorotrifluoroethylene. In contrast to the ethylenation of 1,1‐difluoro‐1,2‐dibromochlorethane, which failed, that of 2‐chloro‐1,1,2‐trifluoro‐1,2‐dibromoethane was optimized and led to 2‐chloro‐1,1,2‐trifluoro‐1,4‐dibromobutane. The kinetics of the copolymerization of VDF with this brominated monomer initiated by t‐butyl peroxypivalate led to an assessment of the reactivity ratios, rVDF = 0.96 ± 0.67 and rC4Br = 0.09 ± 0.63, at 50 °C. The suspension copolymerization was also carried out, and the chemical modifications of the resulting bromo‐containing poly(vinylidene fluoride)s were attempted and consisted mainly of elimination or nucleophilic substitution of the bromine. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 917–935, 2005  相似文献   

2.
Novel drug‐loaded hydrogel beads for intestine‐targeted controlled release were developed by using pH‐ and temperature‐sensitive carboxymethyl chitosan‐graft‐poly(N,N‐diethylacrylamide) (CMCTS‐g‐PDEA) hydrogel as carriers and vitamin B2 (VB2) as a model drug. The hydrogel beads were prepared based on Ca2+ ionic crosslinking in acidic solution and formed dual crosslinked network structure. The structure of hydrogel and morphology of drug‐loaded beads were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The study about swelling characteristics of hydrogel beads indicated that the beads had obvious pH‐ and temperature‐sensitivity. In vitro release studies of drug‐loaded beads were carried out in pH 1.2 HCl buffer solution and pH 7.4 phosphate buffer solution at 37°C, respectively. The results indicated that the dual crosslinked method could effectively control the drug release rate under gastrointestinal tract (GIT) conditions, which was superior to traditional single crosslinked beads. In addition, the effects of grafting percentage, pH value, and temperature on the release behavior of the VB2 were investigated. The drug release mechanism of CMCTS‐g‐PDEA drug‐loaded beads was analyzed by Peppa's potential equation. According to this study, the dual crosslinked hydrogel beads based on CMCTS‐g‐PDEA could serve as suitable candidate for drug site‐specific carrier in intestine. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
4‐Methyl acetanilide ( 1 ) on treatment with bromine in acetic acid, followed by hydrolysis with dilute HCl/NaOH solution, yielded 2‐bromo‐4‐methyl aniline ( 2 ), which on treatment with sodium thiocyanate in acetic acid afforded 2‐amino‐4‐bromo‐6‐methyl benzothiazole ( 3 ). Compound 3 in ethylene glycol was heated at 150°C with 80% hydrazine hydrate to get 4‐bromo‐2‐hydrazino‐6‐methyl benzothiazole ( 4 ). This hydrazino compound 4 on heating with formic acid for 3 h yielded 4‐bromo‐2‐hydrazinoformyl‐6‐methyl benzothiazole ( 5 ). Same compound 4 when heated independently with formic acid for 6 h/urea for 3 h/carbon disulfide in alkali afforded 5‐bromo‐7‐methyl ( 6 )/5‐bromo‐3‐hydroxy‐7‐methyl ( 7 )/5‐bromo‐3‐mercapto‐7‐methyl ( 8 )‐1,2,4‐triazolo‐[3,4‐b]‐benzothiazoles, respectively. Compound 4 on heating with acetic acid/acetic anhydride gave acetyl benzothiazolyl derivative 9 , which on cyclization with orthophosphoric acid yielded 5‐bromo‐3,7‐dimethyl‐1,2,4‐triazolo‐[3,4‐b]‐benzothiazole ( 10 ). All these newly synthesized compounds were screened for antimicrobial activity against Escherichia coli (Gram ?ve), Bacillus subtilis (Gram +ve), Erwinia carotovora, and Xanthomonas citri using ampicillin, streptomycin, and penicillin as a standard for comparison.  相似文献   

4.
Copolymers of styrene and methyl acrylate were synthesized in the form of spherical beads (0.4–1.2 mm) and sulfonated with concentrated sulfuric acid. The sulfonated copolymer shows an in‐built acid–base indicator property; the yellow color in the acid medium changes to an intense pink color at the equivalence point. Also, the ion‐exchange capacity of the sulfonated copolymer increases with time, reaches a maximum, and decreases thereafter. The results were explained in terms of Fourier transform infrared spectroscopic analysis considering internal Friedel–Craft acylation followed by cyclic dehydration leading to a conjugated structure. The developed ion‐exchange resin also demonstrated better performance in demineralization of water as compared with the conventional polystyrene‐based beads. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2166–2170, 2003  相似文献   

5.
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008  相似文献   

6.
A series of well‐defined graft copolymers with a polyallene‐based backbone and polystyrene side chains were synthesized by the combination of living coordination polymerization of 6‐methyl‐1,2‐heptadien‐4‐ol and atom transfer radical polymerization (ATRP) of styrene. Poly(alcohol) with polyallene repeating units were prepared via 6‐methyl‐1,2‐heptadien‐4‐ol by living coordination polymerization initiated by [(η3‐allyl)NiOCOCF3]2 firstly, followed by transforming the pendant hydroxyl groups into halogen‐containing ATRP initiation groups. Grafting‐from route was employed in the following step for the synthesis of the well‐defined graft copolymer: polystyrene was grafted to the backbone via ATRP of styrene. The cleaved polystyrene side chains show a narrow molecular weight distribution (Mw/Mn = 1.06). This kind of graft copolymer is the first example of graft copolymer via allene derivative and styrenic monomer. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5509–5517, 2007  相似文献   

7.
Novel hydrophilic and thermosensitive poly(N,N‐diethylacrylamide‐co‐2‐hydroxyethyl methacrylate) resins were prepared by inverse suspension polymerization with N,N′‐methylenebis(acrylamide) as a crosslinker. The effects of chemical composition and degree of crosslinking on the polymerization were investigated. The polymer resins were characterized by elemental analysis, infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. The thermosensitivity of the crosslinked resins was demonstrated by their lower critical swelling temperatures. The swelling and deswelling volume of the beads in water varied depending on the molar fraction of the N,N‐diethylacrylamide. These beads swelled extensively in a variety of common solvents. They had high loadings of functional hydroxyl groups and were used as supports in the solid‐phase synthesis of an oligopeptide. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1681–1690, 2003  相似文献   

8.
Poly(methyl acrylate)s, poly(ethyl acrylate)s, and poly(butyl acrylate)s with α,ω‐di(bromo) chain ends and Mn from 8500 to 35,000 were synthesized by single‐electron‐transfer living radical polymerization (SET‐LRP). The analysis of their chain ends by a combination of 1H and 2D‐NMR, GPC, MALDI‐TOF MS, chain end functionalization, chain extension, and halogen exchange experiments demonstrated the synthesis of perfectly bifunctional polyacrylates by SET‐LRP. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4684–4695, 2007  相似文献   

9.
New halogen‐substituted aromatic–aliphatic and wholly aromatic polyamides with high inherent viscosities were synthesized by the direct polycondensation of 5‐halo‐m‐phenylenediamines, where the halogens were Cl, Br, and I, with both aliphatic and aromatic dicarboxylic acids in N‐methyl‐2‐pyrrolidone with a mixture of triphenyl phosphite and pyridine as a condensing agent. The solubility of the halogen‐substituted polyamides was much higher than that of the parent polyamides derived from m‐phenylenediamine. The glass‐transition temperatures of the substituted aromatic–aliphatic polyamides increased in the order Cl < Br < I, whereas the temperatures of 10% weight loss in air decreased in the reverse order. The limiting oxygen index values, as an indication of flammability, increased for the substituted aromatic–aliphatic polyamides in the order Cl < Br < I. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3911–3918, 2000  相似文献   

10.
The N‐substituted polyaniline (PANi) was synthesized by incorporation of bromine‐terminated mesogens onto the emeraldine form of polyaniline. Firsty three liquid crystalline molecules containing biphenyl units were synthesized. These mesogenic molecules are named as: 6‐bromo‐ (4‐hexyloxy‐biphenyl‐4′‐oxy) hexane (C6? C6Br), 5‐bromo‐(4‐hexyloxy‐biphenyl‐4′‐oxy) pentane (C6? C5Br), 6‐bromo‐(4‐octyloxy‐biphenyl‐4′‐oxy) hexane (C8? C6Br). Differential scanning calorimetry (DSC) in combination with polarizing optical microscopy (POM) were used to investigate the thermal properties of them. Optical microscopy showed focal conic texture characteristic of the Smectic A phase for (C6? C5Br) and (C8? C6Br). For (C6? C6? Br) smectic phase was determined. DSC experiments were also found in accord with mesophase formation. For the synthesis of N‐substituted polyaniline with these mesogen molecules, the emeraldine base polyaniline was reacted with BuLi to produce the N‐anionic polyaniline and then deprotonated polyaniline was reacted with bromine‐end mesogen to prepare mesogen‐substituted polyaniline through N‐substitution reaction. The degree of N‐substitution can be controlled by adjusting the molar feed ratio of mesogen to the number of repeat units of PANi. The microstructure and compositions of obtained polymers were characterized by FT‐IR, elemental analysis, DSC, and scanning electron microscopy (SEM). The cyclicvoltammetry show that the electroactivity of N‐substituted polyaniline is strongly dependent on the degree of N‐grafting. The solubility of mesogen‐substituted polyaniline in common organic solvents such as THF and chloroform was improved by increasing the degree of N‐substitution and also the samples are partially soluble in xylene. Liquid crystalline behavior of mesogen‐substituted polyanilines was investigated via POM, but no mesophase was observed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The purpose of this study is to correlate the nano‐organization in water of coil‐rod‐coil amphiphilic block copolymers constituted of a conjugated segment to their optoelectronic properties. The ABA block copolymer structures, easily achieved via coupling reactions, are based on conjugated rod of dihexylfluorene and 3,4‐ethylenedioxythiophene units linked to two flexible poly(ethylene oxide) or poly[(ethylene oxide)‐ran‐(propylene oxide)] chains. These well‐defined copolymers exhibited a range of specific morphologies in water, a good solvent of coil blocks and a bad solvent of the conjugated rod. Particularly, vesicles and micelles with spherical, cylindrical, or elongated shape were noticed. Correlations were attempted to be established between the weight percent of the conjugated sequence contained in the copolymers, the morphology of the nanostructures obtained by self‐assembly in solution and the resulting optical properties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4602–4616, 2008  相似文献   

12.
New supported catalytic systems based on the immobilization of a ligand onto supported (co)polymers were prepared, allowing copper immobilization onto a solid support during the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA). These supported catalysts were elaborated by the ATRP of 2‐vinyl‐4,4‐dimethyl‐5‐oxazolone and/or styrene onto a Wang resin initiator. Two different approaches were used, involving well‐defined architectures synthesized by ATRP. First, a supported electrophilic homopolymer [Wang‐g‐poly(2‐vinyl‐4,4‐dimethyl‐5‐oxazolone)] was synthesized to obtain an azlactone ring at each repetitive unit, and a supported statistical copolymer [Wang‐g‐poly(2‐vinyl‐4,4‐dimethyl‐5‐oxazolone‐stat‐styrene)] was synthesized to introduce a distance between the azlactone rings. The azlactone‐based (co)polymers were then modified by a reaction with N,N,N′,N′‐tetraethyldiethylenetriamine (TEDETA) to create supported complexing sites for copper bromide. The ATRP of MMA was studied with these supported ligands, and a first‐order kinetic plot was obtained, but high polydispersity indices of the obtained poly(methyl methacrylate) were observed (polydispersity index > 2). On the other hand, the supported ATRP of styrene was performed, followed by the nucleophilic substitution of bromine by TEDETA (Wang‐g‐polystyrene–N,N,N′,N′‐tetraethyldiethylenetriamine) at the chain end of the grafted polystyrene chains. This strategy led the ligand away from the core bead, depending on the length of the polystyrene block (number‐average molecular weight determined by size exclusion chromatography = 1100–2250 g/mol). These supported complexes mediated a controlled polymerization of MMA, yielding polymers with controlled molar masses and low polydispersity indices. Moreover, after the polymerization, 96% of the initial copper was kept in the beads. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5316–5328, 2006  相似文献   

13.
In the present study, a new (E)‐rich‐enyne π‐conjugated polymer containing a carbazole was designed and synthesized. Two different synthesis methods of poly[N‐(2‐ethylhexyl)‐3,6‐carbazolyleneethynylene‐(E)‐vinylene] (PCZEV) have been prepared from 3,6‐diethynyl‐9(2‐ethylhexyl)carbazole by using the palladium‐carbene‐catalyzed reaction and/or by using the organolanthanide‐catalyzed reaction leading to well‐defined polymer, and their general properties were studied. Compared to poly[N‐(2‐ethylhexyl)‐3,6‐carbazolyleneethynylene] (PCE), the UV‐vis absorption and photoluminescence of the PCZEV was red‐shifted, which indicates the extension of conjugation length. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2434–2442, 2009  相似文献   

14.
The micellar macro‐RAFT agent‐mediated dispersion polymerization of styrene in the methanol/water mixture is performed and synthesis of temperature‐sensitive ABC triblock copolymer nanoparticles is investigated. The thermoresponsive diblock copolymer of poly(N,N‐dimethylacrylamide)‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine] trithiocarbonate forms micelles in the polymerization solvent at the polymerization temperature and, therefore, the dispersion RAFT polymerization undergoes as similarly as seeded dispersion polymerization with accelerated polymerization rate. With the progress of the RAFT polymerization, the molecular weight of the synthesized triblock copolymer of poly(N,N‐dimethylacrylamide)‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine]‐b‐polystyrene linearly increases with the monomer conversion, and the PDI values of the triblock copolymers are below 1.2. The dispersion RAFT polymerization affords the in situ synthesis of the triblock copolymer nanoparticles, and the mean diameter of the triblock copolymer nanoparticles increases with the polymerization degree of the polystyrene block. The triblock copolymer nanoparticles contain a central thermoresponsive poly [N‐(4‐vinylbenzyl)‐N,N‐diethylamine] block, and the soluble‐to‐insoluble ‐‐transition temperature is dependent on the methanol content in the methanol/water mixture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2155–2165  相似文献   

15.
The H‐shaped copolymers, [poly(L ‐lactide)]2polystyrene [poly(L ‐lactide)]2, [(PLLA)2PSt(PLLA)2] have been synthesized by combination of atom transfer radical polymerization (ATRP) with cationic ring‐opening polymerization (CROP). The first step of the synthesis is ATRP of St using α,α′‐dibromo‐p‐xylene/CuBr/2,2′‐bipyridine as initiating system, and then the PSt with two bromine groups at both chain ends (Br–PSt–Br) were transformed to four terminal hydroxyl groups via the reaction of Br–PSt–Br with diethanolamine in N,N‐dimethylformamide. The H‐shaped copolymers were produced by CROP of LLA, using PSt with four terminal hydroxyl groups as macroinitiator and Sn(Oct)2 as catalyst. The copolymers obtained were characterized by 1H NMR spectroscopy and gel permeation chromatography. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2794–2801, 2006  相似文献   

16.
Ni2+‐complexed poly(2‐acetamidoacrylic acid) (PAAA) hydrogel beads were developed for the site‐specific reversible immobilization and purification of the histidine‐tagged green fluorescent protein (His‐tagged GFP). PAAA hydrogel beads were prepared by photopolymerization, and significantly improved mechanical properties of PAAA hydrogel beads were observed in comparison with PAAA hydrogel from our previous study. Confocal laser scanning microscopy was used to determine the binding of His‐tagged GFP to the hydrogel beads in three‐dimensional space. Photoluminescence spectroscopy revealed 89% of binding efficiency of His‐tagged GFP to the Ni2+‐PAAA hydrogel beads, 51% of yielding recovery. The maximum binding capacity of His‐tagged GFP was estimated to be 0.45 µg/mg of Ni2+‐PAAA hydrogel beads. The recombinant His‐tagged GFP from the soluble fraction of E. coli BL21(DE3) cell lysates was purified with Ni2+‐PAAA hydrogel beads. The major advantage of the Ni2+‐PAAA hydrogel beads system was simple preparation procedures of producing the matrix, because PAAA hydrogel beads had relatively enhanced mechanical strength than soft hydrogels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Poly[N‐(4‐vinylbenzyl)‐N,N‐dibutylamine hydrochloride] trithiocarbonate, which contains the reactive trithiocarbonate group and the appending surface‐active groups, is used as both surfactant and macromolecular reversible addition‐fragmentation chain transfer (macro‐RAFT) agent in batch emulsion polymerization of styrene. Under the conditions at high monomer content of ~20 wt % and with the molecular weight of the macro‐RAFT agent ranging from 4.0 to 15.0 kg/mol, well‐controlled batch emulsion RAFT polymerization initiated by the hydrophilic 2‐2′‐azobis(2‐methylpropionamidine) dihydrochloride is achieved. The polymerization leads to formation of nano‐sized colloids of the poly[N‐(4‐vinylbenzyl)‐N,N‐dibutylamine hydrochloride]‐b‐ polystyrene‐b‐poly[N‐(4‐vinylbenzyl)‐N,N‐dibutylamine hydrochloride] triblock copolymer. The colloids generally have core‐shell structure, in which the hydrophilic block forms the shell and the hydrophobic block forms the core. The molecular weight of the triblock copolymer linearly increases with increase in the monomer conversion, and the values are well‐consistent with the theoretical ones. The molecular weight polydispersity index of the triblock copolymer is below 1.2 at most cases of polymerization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
This report focuses on epoxy‐dicyandiamide (DICY) curing system accelerated by N‐aryl‐N′,N′‐dialkyl urea, aiming at clarifying the accelerating mechanism and the relationship between accelerating effect and molecular structure of the accelerators. Nine N‐aryl‐N′,N′‐dialkyl ureas were synthesized and investigated with measurements of differential scanning calorimetry, thermo gravimetric/differential thermal analysis and NMR spectroscopy. The results revealed that the ureas released the corresponding secondary amines by the thermal dissociation in the presence of epoxide, which led to the formation of tertiary amines that catalyze the addition reaction of DICY to epoxide. Moreover, a tendency that the ureas able to release more compact amines exhibited higher acceleration effects was discovered. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

19.
A new bipyridine‐functionalized dithioester was synthesized and further used as a RAFT agent in RAFT polymerization of styrene and N‐isopropylacrylamide. Kinetics analysis indicates that it is an efficient chain transfer agent for RAFT polymerization of the two monomers which produce polystyrene and poly(N‐isopropylacrylamide) polymers with predetermined molecular weights and low polydispersities in addition to the end functionality of bipyridine. The bipyridine end‐functionalized polymers were further used as macroligands for the preparation of star‐shaped metallopolymers. Hydrophobic polystyrene macroligand combined with hydrophiphilic poly(N‐isopropylacrylamide) was complexed with ruthenium ions to produce amphiphilic ruthenium‐cored star‐shaped metallopolymers. The structures of these synthesized metallopolymers were further elucidated by UV–vis, fluorescence, size exclusion chromatography (SEC), and differential scanning calorimetry (DSC) as well as NMR techniques. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4225–4239, 2007  相似文献   

20.
Azlactone‐functionalized microporous polystyrene resins were synthesized by suspension polymerization of styrene, divinylbenzene and N‐(p‐vinylbenzyl)‐4,4‐dimethylazlactone (VBM). A fractional factorial design of experiments (DOE) has been used to evaluate the influence of several parameters (factors) on the physical and chemical properties (responses) of the resins. Six factors were considered: (i) the organic/aqueous phase ratio, (ii) the amount of the functional monomer N‐(p‐vinylbenzyl)‐4,4‐dimethylazlactone, (iii) the amount of stabilizer, (iv) the amount of initiator, (v) the stirring speed, and (vi) the equilibration time. The process responses were the yield of polymerization, the diameter of the beads and their polydispersity, their swelling ratio in dichloromethane and the accessibility ratio of the immobilized azlactone sites. This methodology enables the determination of an optimal combination of the six factors to synthesize beads in high yield (92%) with remarkable properties for SPOS applications (azlactone sites loading = 1.57 mmol/g, swelling ratio in dichloromethane = 5.0 mL/g and 100% accessibility ratio). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3677–3686, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号