首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A novel nonconjugated copolymer (PVKEu) with carbazole segments and phenanthroline [Eu(β‐diketonate)3] moieties was synthesized via free radical copolymerization, and characterized by FTIR, 1H NMR spectroscopy, GPC, ICP, and elemental analysis. The copolymer exhibited good solubility, as well as good thermal stability and high glass transition temperature. The photoluminescence (PL) of this polymer in solution and in solid film has been studied. A multi‐layer device with the configuration of ITO/PEDOT: PSS (40 nm)/PVKEu (70 nm)/BCP (15 nm)/AlQ3 (30 nm)/LiF/Al exhibited nearly monochromatic red emission at 615 nm and voltage‐independent spectral stability. Our results suggest that enhancing the ligand‐mediated energy transfer between the matrix polymer and europium complex is a potential method to improve the electroluminescence performance of the Eu‐chelated polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 210–221, 2009  相似文献   

3.
We have synthesized six p‐type copolymers, CPDT ‐ co ‐ TPADCN , CPDT ‐ co ‐ TPADTA , CPDT ‐ co ‐ TPATCN , CPDT ‐ co ‐ DFADCN , CPDT ‐ co ‐ DFADTA , and CPDT ‐ co ‐ DFATCN , consisting of a cyclopenta[2,1‐b:3,4‐b′]dithiophene (CPDT) unit and an organic dye in an alternating arrangement. Triphenylamine (TPA) or difluorenylphenyl amine (DFA) units serve as the electron donors, whereas dicyanovinyl (DCN), 1,3‐diethyl‐2‐thiobarbituric acid, or tricyanovinyl (TCN) units act as the electron acceptors in the dyes. The target polymers were prepared via Stille coupling, followed by postfunctionalization to introduce the electron acceptors to the side chains. Because of the strongest withdrawing ability of TCN acceptor to induce efficient intramolecular charge transfer, CPDT ‐ co ‐ TPATCN and CPDT ‐ co ‐ DFATCN exhibit the broader absorption spectra covering from 400 to 900 nm and the narrower optical band gaps of 1.34 eV. However, the CPDT ‐ co ‐ TPATCN :PC71BM and CPDT ‐ co ‐ DFATCN :PC71BM based solar cells showed the power conversion efficiencies (PCEs) of 0.22 and 0.31%, respectively, due to the inefficient exciton dissociation. The DFA‐based polymers possess deeper‐lying HOMO energy levels than the TPA‐based polymer analogues, leading to the higher Voc values and better efficiencies. The device based on CPDT ‐ co ‐ DFADTA :PC71BM blend achieved the best PCE of 1.38% with a Voc of 0.7 V, a Jsc of 4.57 mA/cm2, and a fill factor of 0.43. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
P(BDT‐TCNT) and P(DTBDAT‐TCNT) , which has an extended conjugation length, were designed and synthesized for applications in organic solar cell (OSCs). The solution absorption maxima of P(DTBDAT‐TCNT) with the extended conjugation were red‐shifted by 5–15 nm compared with those of P(BDT‐TCNT) . The optical band gaps and highest occupied molecular orbital (HOMO) energy levels of both P(BDT‐TCNT) and P(DTBDAT‐TCNT) were similar. The structure properties of thin films of these materials were characterized using grazing‐incidence wide‐angle X‐ray scattering and tapping‐mode atomic force microscopy, and charge carrier mobilities were characterized using the space‐charge limited current method. OSCs were formed using [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) as the electron acceptor and 3% diphenylether as additive suppress aggregation. OSCs with P(BDT‐TCNT) as the electron donor exhibited a power conversion efficiency (PCE) of 4.10% with a short‐circuit current density of JSC = 9.06 mA/cm2, an open‐circuit voltage of VOC = 0.77 V, and a fill factor of FF = 0.58. OSCs formed using P(DTBDAT‐TCNT) as the electron donor layer exhibited a PCE of 5.83% with JSC = 12.2 mA/cm2, VOC = 0.77 V, and FF = 0.62. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3182–3192  相似文献   

5.
Thermoregulated phase‐transfer catalysis for the transfer hydrogenation of 2‐octanone in 2‐propanol/H2O biphasic media was achieved with ruthenium‐bearing microgel‐core star polymers with amphiphilic, thermosensitive poly(ethylene glycol) (PEG) arms [Ru(II)‐PEG star], which were directly prepared by the ruthenium‐catalyzed living radical polymerization in conjunction with a phosphine ligand‐carrying styrene derivative. The star polymers were first placed in the aqueous (lower) layer at room temperature and immediately moved into the organic (upper) layer at 100 °C, and once again, moved down to the aqueous layer (lower) upon cooling the solution to room temperature. The Ru(II)‐PEG star catalyst was clearly superior to the original Ru(II) catalyst and related non‐microgel catalysts [Ru(II)‐PEG block] in terms of activity and recovery/recycle, due to the unique designer structure of the microgel‐core star polymers. Other substrates (less hydrophobic alkyl ketones and aromatic ketone) were also efficiently hydrogenated into the corresponding sec‐alcohols with the star catalyst in aqueous media. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 373–379, 2010  相似文献   

6.
A new heteroarylene‐vinylene donor–acceptor polymer P(BDT‐V‐BTD) with reduced bandgap has been synthesized and its photophysical, electronic and photovoltaic properties investigated both experimentally and theoretically. The structure of the polymer comprises an unprecedented combination of a strong donor (4,8‐dialkoxy‐benzo[1,2‐b:4,5‐b']dithiophene, BDT), a strong acceptor (2,1,3‐benzothiadiazole, BTD) and a vinylene spacer. The new polymer was obtained by a metal‐catalyzed cross‐coupling Stille reaction and fully characterized by NMR, UV–vis absorption, GPC, TGA, DSC and electrochemistry. Detailed ab initio computations with solvation effects have been performed for the monomer and model oligomers. The electrochemical investigation has ascertained the ambipolar character of the polymer and energetic values of HOMO, LUMO and bandgap matching materials‐design rules for optimized organic photovoltaic devices. The HOMO and LUMO energies are consistently lower than those of previous heteroarylene‐vinylene polymer while the introduction of the vinylene spacer afforded lower bandgaps compared to the analogous system P(BDT‐BTD) with no spacer between the aromatic rings. These superior properties should allow for enhanced photovoltages and photocurrents in photovoltaic devices in combination with PCBM. Preliminary photovoltaic investigation afforded relatively modest power conversion efficiencies of 0.74% (AM 1.5G, 100 mW/cm2), albeit higher than that of previous heteroarylene‐vinylene polymers and comparable to that of P(BDT‐BTD). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
A series of new low‐band gap copolymers based on dioctyloxybenzo[1,2‐b;3,4‐b′] dithiophene and bis(2‐thienyl)‐2,3‐diphenylbenzo[g]quinoxaline monomers have been synthesized via a Stille reaction. The effect of different functional groups attached to bis(2‐thienyl)‐2,3‐diphenylbenzo[g]quinoxaline was investigated and compared with their optical, electrochemical, hole mobility, and photovoltaic properties. Polymer solar cell (PSC) devices of the copolymers were fabricated with a configuration of ITO/ PEDOT: PSS/copolymers: PCBM (1:4 wt ratio)/Ca/Al. The best performance of the PSC device was obtained by using PbttpmobQ as the active layer. A power conversion efficiency of 1.42% with an open‐circuit voltage of 0.8 V, a short‐circuit current (JSC) of 5.73 mA cm−2, and a fill factor of 30.9% was achieved under the illumination of AM 1.5, 100 mW cm−2. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
A new benzodithiophene (BDT)‐based polymer, poly(4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene vinylene) (PBDTV), was synthesized by Pd‐catalyzed Stille‐coupling method. The polymer is soluble in common organic solvents and possesses high thermal stability. PBDTV film shows a broad absorption band covering from 350 nm to 618 nm, strong photoluminescence peaked at 545 nm and high hole mobility of 4.84 × 10?3 cm2/Vs. Photovoltaic properties of PBDTV were studied by fabricating the polymer solar cells based on PBDTV as donor and PC70BM as acceptor. With the weight ratio of PBDTV: PC70BM of 1:4 and the active layer thickness of 65 nm, the power conversion efficiency of the device reached 2.63% with Voc = 0.71 V, Isc = 6.46 mA/cm2, and FF = 0.57 under the illumination of AM1.5, 100 mW/cm2. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1822–1829, 2010  相似文献   

9.
Water‐soluble luminescent material was developed by introducing europium (Eu(III)) ions into the core of a star polymer. Living radical polymerization was used to obtain the star polymer. The strategy to introduce Eu(III) ions into the star polymer was studied using poly(methyl methacrylate) as an arm. The best Eu(III) ion introduction was obtained by simultaneous introduction, resulting in about 30 µmol/g‐polymer, which needed only one step for synthesis. The utilization of a hydrophilic polymer such as poly(ethylene oxide) (PEO) as an arm produced a water‐soluble star polymer. The Eu(III)‐bearing PEO star polymer obtained in this study was water soluble and showed fluorescence. In addition, it was stable in water after 1 month. The Eu(III)‐bearing star polymer exhibited luminescent properties under UV light irradiation with relatively high quantum yields of 60% in organic solution and 19% in aqueous solution. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2527–2535  相似文献   

10.
Zero‐valent palladium complex, Pd(PTh3)3, with three tri(2‐thienyl)phosphine ligands was prepared and characterized. Pd(PTh3)3 is superior to Pd(PPh3)4 in catalyzing Suzuki‐Miyaura coupling and polymerization of thiophene‐based derivatives. The Suzuki polycondensation of 3‐hexyl‐5‐iodothiophene‐2‐boronic pinacol ester with Pd(PTh3)3 as the catalyst precursor afforded high‐molecular‐weight P3HT with high regularity and yield. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4556–4563, 2008  相似文献   

11.
Novel conjugated polymers composed of benzo[1,2‐b:4,5‐b′]dithiophene and thieno[3,4‐b]pyrazine or dithieno[3′,2′:3,4;2″,3″:5,6]benzo[1,2‐d]imidazole units are synthesized by Stille polycondensation. The resulting polymers display a longer wavelength absorption and well‐defined redox activities. The effective intramolecular charge‐transfer and energy levels of all polymers are elucidated by computational calculations. Bulk‐heterojunction solar cells based on these polymers as p‐type semiconductors and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) as an n‐type semiconductor are fabricated, and their photovoltaic performances are for the first time evaluated. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1067–1075  相似文献   

12.
Kumada‐Tamao coupling polymerization of 6‐bromo‐3‐chloromagnesio‐2‐(3‐(2‐methoxyethoxy)propyl)pyridine 1 with a Ni catalyst and Suzuki‐Miyaura coupling polymerization of boronic ester monomer 2 , which has the same substituted pyridine structure, with tBu3PPd(o‐tolyl)Br were investigated for the synthesis of a well‐defined n‐type π‐conjugated polymer. We first carried out a model reaction of 2,5‐dibromopyridine with 0.5 equivalent of phenylmagnesium chloride in the presence of Ni(dppp)Cl2 and then observed exclusive formation of 2,5‐diphenylpyridine, indicating that successive coupling reaction took place via intramolecular transfer of Ni(0) catalyst on the pyridine ring. Then, we examined the Kumada‐Tamao polymerization of 1 and found that it proceeded homogeneously to afford soluble, regioregular head‐to‐tail poly(pyridine‐2,5‐diyl), poly(3‐(2‐(2‐(methoxyethoxy)propyl)pyridine) (PMEPPy). However, the molecular weight distribution of the polymers obtained with several Ni and Pd catalysts was very broad, and the matrix‐assisted laser desorption ionization time‐of‐flight mass spectra showed that the polymer had Br/Br and Br/H end groups, implying that the catalyst‐transfer polymerization is accompanied with disproportionation. Suzuki‐Miyaura polymerization of 2 with tBu3PPd(o‐tolyl)Br also afforded PMEPPy with a broad molecular weight distribution, and the tolyl/tolyl‐ended polymer was a major product, again indicating the occurrence of disproportionation. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
In this work, the asymmetrical analog of 3,4‐ethylenedioxythiophene (EDOT), thieno[3,4‐b]‐1,4‐oxathiane (EOTT), was synthesized and chemically polymerized first in aqueous solution using poly(styrene sulfonic sodium) (PSS) as the polyelectrolyte to yield poly(thieno[3,4‐b]‐1,4‐oxathiane) (PEOTT)/PSS. As‐formed film exhibited low electrical conductivity (~10?4 S/cm). Alternatively, EOTT together with EDOT (in different molar ratio of 1:1 and 1:5) was copolymerized and the polymer poly(EOTT‐co‐EDOT)/PSS had electrical conductivity of 10?1 S/cm. After dimethyl sulfoxide (DMSO) treatment, the electrical conductivity was enhanced to 100 S/cm; however, the conductivity of the above homopolymer was reduced (~10?5 S/cm). Raman spectroscopy was used to interpret conductivity enhancement or reduction after DMSO treatment. The conductivity decrease of PEOTT/PSS compared to poly(EOTT‐co‐EDOT)/PSS may arise from the conformational change of PEOTT backbone from the quasi‐planar to the distorted planar mode induced by PSS/PSSH through ionic interaction. Kinetic studies revealed that the copolymer had high coloration efficiencies (375 cm2/C), low switching voltages (?0.8 to +0.6 V), decent contrast ratios (45%), moderate response time (1.0 s), excellent stability, and color persistence. An electrochromic device employing poly(3‐methylthiophene) and poly(EOTT‐co‐EDOT)/PSS as the anode and cathode materials was also studied. From these results, poly(EOTT‐co‐EDOT)/PSS would be a promising candidate material for organic electronics. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2285–2297  相似文献   

14.
Sub‐micrometer layers of electrochemically prepared methyl‐ and decyl‐substituted poly(3,4‐ethylenedioxythiophene) (PEDOT) carrying perchlorate counterions have been examined with grazing incidence X‐ray diffraction with synchrotron radiation. The materials were found to be partially crystalline, and the data could be ascribed to a model of sheets of π‐π stacked polymer chains with a smectic ordering of these sheets. An unsubstituted PEDOT sample with the polymeric polystyrenesulfonic acid as a counterion was also investigated and turned out to be essentially amorphous. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 945–952, 2003  相似文献   

15.
The synthesis of four alternating copolymers using benzo[2,1‐b;3,4‐b′]dithiophene (BDP) as the common donor unit is presented. Before the synthesis, theoretical calculations that we performed predicted that the incorporation of BDP, which consists of fused dithiophene units with a benzene ring, into these polymers would produce a low‐lying highest occupied molecular orbital (HOMO) energy level. Low‐lying HOMO levels are desirable to produce high open circuit voltages (VOC) in organic bulk heterojunction (BHJ) photovoltaic devices. The polymers' structural characterization, as well as the preliminary results of their performance in BHJ devices, using (6,6)‐phenyl C61‐butyric acid methyl ester as the electron acceptor, is presented. The VOC values follow the expected trend: increasing with decreasing HOMO level of the polymer. High VOC values of 0.81 and 0.82 V have been obtained from two polymers: PBDPBT and PBDPDPP. The initial power conversion efficiency achieved in these unoptimized devices was 1.11% because of relatively low JSC values. The variation observed in the JSC values between the four polymers is discussed. Device performance is expected to increase with optimization of processing conditions for the devices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Three alternating donor–acceptor copolymers have been synthesized by Stille coupling polymerization of 2,6‐(trimethyltin)?4,8‐bis(5‐dodecylthiophene‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene with 1,3‐dibromo‐5‐hexylthieno[3,4‐c]pyrrole‐4,6‐dione, 4,7‐dibromo‐1,3‐benzothiadiazole, and 5,7‐dibromo‐2,3‐didodecylthieno[3,4‐b]pyrazine, respectively. The synthesized polymers were tested in bulk heterojunction solar cells as blends with the acceptor [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM). The thienopyrroledione copolymer displayed a power conversion efficiency of 3.00% which was increased to 3.86% by application of the additive 1,8‐diiodooctane (DIO). Tapping mode atomic force microscopy analysis indicated that there was an increase in the phase separation between polymer and PCBM, leading to an improvement in the performance upon the addition of DIO. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2622–2630  相似文献   

17.
Polymers consisting of benzo[1,2‐b:4,5‐b′]dithiophene and thieno[3,4‐b]thiophene units (PTB‐based polymers), either fully or partially containing 4‐fluorophenyl pendants, are synthesized as electron donor materials for inverted‐type polymer solar cells (PSCs). The influence of the 4‐fluorophenyl pendant content on the thermal and optical properties, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), the hole mobilities, and photovoltaic performances are investigated. As the 4‐fluorophenyl pendant content increased, the HOMO and LUMO of the polymers were deepened proportionally and the open‐circuit voltages of the PSCs improved. Incorporation of 4‐fluorophenyl pendants into the polymers also affected the crystallinity, orientation, and compatibility with [6,6]‐phenyl‐C61‐butyric acid methyl ester in the active layers, leading to nonlinearities in the short‐circuit current densities, and fill factors. The incorporation of an appropriate number of 4‐fluorophenyl pendants enhanced the power conversion efficiencies of the PSC devices from 2.25 to 3.96% for identical device configurations. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1586–1593  相似文献   

18.
In an effort to design efficient low‐cost polymers for use in organic photovoltaic cells the easily prepared donor–acceptor–donor triad of a either cis‐benzobisoxazole, trans‐benzobisoxazole or trans‐benzobisthiazole flanked by two thiophene rings was combined with the electron‐rich 4,8‐bis(5‐(2‐ethylhexyl)‐thien‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene. The electrochemical, optical, morphological, charge transport, and photovoltaic properties of the resulting terpolymers were investigated. Although the polymers differed in the arrangement and/or nature of the chalcogens, they all had similar highest occupied molecular orbital energy levels (?5.2 to ?5.3 eV) and optical band gaps (2.1–2.2 eV). However, the lowest unoccupied molecular orbital energy levels ranged from ?3.1 to ?3.5 eV. When the polymers were used as electron donors in bulk heterojunction photovoltaic devices with PC71BM ([6,6]‐phenyl C71‐butyric acid methyl ester) as the acceptor, the trans‐benzobisoxazole polymer had the best performance with a power conversion efficiency of 2.8%. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 316–324  相似文献   

19.
π‐Conjugated polymers (Poly1–Poly3) containing a 2,2′‐bipyridine (bpy) unit were subjected to coordination to nickel and copper dithiolate for the purpose of manipulating the photophysical properties. The absorption maximum peak of Poly1 [maximum wavelength (λmax) = 446 nm] redshifted by 36 nm upon the coordination of bpy to NiCl2, which produced Poly1–NiCl2. A further bathochromic shift was observed in the spectrum of Poly1–mntNi [mntNi = (maleonitrile dithiolate)nickel; λmax = 499 nm] bearing the dithiolate ligand, which stemmed from the extension of the conjugated system over the nickel dithiolate moiety through the bpy unit. An increase in the [Ni]/[bpy] ratio in Poly1–mntNi rendered the original maximum peak at 446 nm smaller and the lower energy charge‐transfer peak at 499 nm larger; the isosbestic points remained at 380 and 475 nm. The green fluorescence (λmax = 504 nm) emitted from Poly1 markedly diminished upon the coordination of nickel dithiolate because of the effective energy transfer. The absorption maximum peak of Poly1–mntNi in chloroform at 499 nm blueshifted to 471 nm when the volume ratio of the chloroform/N,N‐dimethylformamide solvent reached 10:90. The coordination of nickel dithiolate to Poly2 and Poly3 also brought about redshifts of the absorption maximum peaks of as much as 55 and 61 nm, respectively. The absorption maximum peak of Poly1–(phenyldithiolate)nickel(pdtNi) (λmax = 474 nm) redshifted by 28 nm in comparison with that of Poly1, whereas the magnitude of the shift of Poly1–bis(thiophenoxide)nickel(btpNi) bearing two thiophenoxide ligands was 20 nm. Poly1–mntCu with a tetrahedral copper center was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2631–2639, 2004  相似文献   

20.
Two novel polymeric semiconductor materials based on naphtho[2,1‐b:3,4‐b']dithiophene (NDT), PNDT‐TTT and PNDT‐TET , were designed and synthesized. These synthesized polymers were tested in bulk heterojunction solar cells as blends with the acceptor [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM). PNDT‐TTT contained tri‐thiophene units, and PNDT‐TET contained bi‐thiophene units coupled by ethylenic linkages. Comparison to the properties of PNDT‐T , which contained single thiophene units, these polymers exhibit red‐shifted absorption spectra as a result of the enhanced conjugation lengths. These effects resulted in high short circuit currents (JSC) in the organic solar cells. The PNDT‐TET ‐ and PNDT‐TTT ‐based devices exhibited considerably better photovoltaic performances, with power conversion efficiencies of 3.5 and 3.3%, respectively, compared to the PNDT‐T ‐based device (1.3%). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4742–4751  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号