首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A naphthalenediimide (NDI)‐based conjugated polymer was synthesized by a two‐step direct C‐H arylation sequence. In the first step, two ethylenedioxythiophene units were coupled to NDI by direct arylation. In the second step, the direct arylation polycondensation of the monomer, formed in the first step, with 2,7‐dibromo‐9,9‐dioctylfluorene afforded the corresponding NDI‐based conjugated polymer ( PEDOTNDIF ) with molecular weight of 21,500 in 91% yield. The optical and electrochemical properties of the polymer were evaluated. The polymer showed ambipolar behavior in organic field‐effect transistors (OFETs). The electron mobility of PEDOTNDIF was estimated to be 2.3 × 10?6 cm2 V?1 s?1 using an OFET device with source‐drain (S‐D) Au electrodes. A modified OFET device with S‐D MgAg electrodes increased the electron mobility for PEDOTNDIF to 1.0 × 10?5 cm2 V?1 s?1 due to the more suitable work function of these electrodes, which reduced the injection barrier to the semiconducting polymer. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1401–1407  相似文献   

2.
3.
Palladium‐catalyzed direct arylation polycondensation afforded a bithiazole‐based homopolymer and donor–acceptor (D–A)‐type copolymers where the bithiazole unit served as an acceptor unit. The results of polymerization strongly depended on the solubility of the polymers; long alkyl chain substituents were required for the formation of high‐molecular‐weight polymers in high yields owing to low solubility of the bithiazole‐based polymers. X‐ray diffraction studies revealed that the obtained polymers were highly crystalline. In particular, a well‐ordered lamellar structure was observed in the D–A‐type copolymer with flexible alkyl chains after thermal annealing, presumably owing to the combination of interchain interactions between the bithiazole units and the electrostatic D–A interactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1396–1402  相似文献   

4.
3,4-Appended thiophene monomers furnish unique optoelectronic properties due to electronic and steric effects on the donor unit. Here, we have demonstrated a new polymer synthesis by direct arylation polycondensation of 9,10-dihydro-9,10-[3,4]thiophenoanthracene, a thiophene-based monomer. Chloride-promoted direct arylation polycondensation of 9,10-dihydro-9,10-[3,4]thiophenoanthracene with dibromo monomers with acetate in N,N-dimethylacetamide gave conjugated alternating copolymers. The obtained polymer had a molecular weight of 38,000 and exhibited high film-forming ability. The optical and electrochemical properties of the polymers were also discussed.  相似文献   

5.
The polycondensation reaction of 3,4‐ethylenedioxythiophene with 2,7‐dibromo‐9,9‐dioctylfluorene via Pd‐catalyzed direct arylation gives poly[(3,4‐ethylenedioxythiophene‐2,5‐diyl)‐(9,9‐dioctylfluorene‐2,7‐diyl)]. The reaction conditions are optimized in terms of the Pd precatalysts, reaction time, and carboxylic acid additives. The combination of 1 mol% Pd(OAc)2 and 1‐adamantanecarboxylic acid as an additive is the optimized catalytic system, and it yields the corresponding polymer with a molecular weight of 39 400 in 89% yield. The polycondensation reaction, followed by an end‐capping reaction, effectively provides a linear polymer without Br terminals.  相似文献   

6.
Narrow bandgap and hyperbranched polymers (h‐PTDPP) are synthesized by directly arylation polymerization (DAP) of 2‐bromo‐thiophene‐flanked diketopyrrolopyrrole (Br‐TDPP) as the monomer. Their optical properties as well as chemical structures are studied. The detailed optimization of DAP conditions from catalyst, temperature, solvent, ligand to additive not only leads to high molecular weight h‐PTDPP, but also provides some insight to minimize structural defects in DAP when brominated TDPP is involved as a monomer. The increase in the degree of branching results in lower charge‐carrier mobilities in organic field‐effect transistors involving h‐PTDPP‐3 as the semiconducting channel. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1040–1047  相似文献   

7.
We have demonstrated a direct arylation polycondensation of 3,4‐ethylenedioxythiophene with 2,7‐dibromo‐9,9‐dioctylfluorene using palladium on carbon (Pd/C) as a catalyst. Pd/C is a low‐cost solid‐supported palladium catalyst, giving one of the effective catalytic systems for direct arylation. The Pd/C‐catalyzed direct arylation polycondensation with acetic acid/potassium carbonate in N,N‐dimethylacetamide furnished a high molecular weight π‐conjugated alternating copolymer of EDOT‐fluorene (Mn = 89,300, Mw/Mn = 3.27) in high yield. The polycondensation of EDOT with various dibromoarenes was also achieved, giving EDOT‐carbazole, EDOT‐dialylamine, and EDOT‐bithiophene polymers. Optical and electrochemical properties of the polymers were also discussed. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 55, 1183–1188  相似文献   

8.
Conjugated polymers containing phenyl‐, pyridyl‐, and thiazolyl‐flanked diketopyrrolopyrrole (DPP) were synthesized by direct arylation polycondensation of 3,4‐ethylenedioxythiophene derivatives and dibrominated DPP‐based monomers, in order to probe the effects of the aromatic groups in the DPP units on the absorption property, energy level, and crystallinity. A polymer possessing thiazolyl‐flanked DPP units was found to display long‐wavelength absorption properties and higher crystallinity than the polymers bearing phenyl‐ and pyridyl‐flanked DPP units. These features of the thiazolyl‐based polymer were afforded by its coplanar structure of the main chain. The synthesized polymers showed semiconducting properties in organic field effect transistors and organic photovoltaics. Direct arylation polycondensation is an efficient synthetic method that affords a series of DPP‐based polymers in a simple fashion and, thus, helping in a comprehensive understanding on the relationship between the aromatic groups in DPP units and their physical properties. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2337–2345  相似文献   

9.
10.
In this study, we report the synthesis of π‐conjugated network polymers including unique fluorescent units via palladium‐catalyzed direct (C? H) arylation polycondensation of 1,2,4,5‐tetrafluorobenzene with tetrabromoarenes. The obtained polymers, including tetraphenylethene (TPE) or pyrene (PYR) units, had microporous structures with the specific Brunauer–Emmett–Teller (BET) surface areas at 508 and 824 m2 g?1, respectively. These polymers possessed narrow pore distributions (<15 nm). These analyses supported that π‐conjugated microporous polymers (CMPs) were synthesized by the direct arylation. Similar to the result of BET surface areas, carbon capture capacity of CMP based on PYR unit was higher than that of CMP based on TPE unit. Because the nitrogen capture capacity of these CMPs was low (≈ 0), selectivity of carbon dioxide adsorption was very high. TPE is a typical aggregation‐induced emission unit but PYR is an aggregation‐caused quenching (ACQ) molecule. The incorporation of TPE unit into the microporous polymer gave green‐colored fluorescence (Φ = 0.12). The polymer including PYR units also showed the green‐colored fluorescence (Φ = 0.05) even though the ACQ property. These synthesized CMPs exhibited characteristic solvatofluorochromism. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3862–3867  相似文献   

11.
Perylene bisimide (PBI)‐based acceptor polymers have been synthesized by the facile and environmental‐friendly palladium‐catalyzed direct arylation. The direct arylation using a bromothiophene‐extended PBI monomer, which was designed for the direct arylaion, proceeded to yield PBI‐based acceptor polymers (PPBI3T). As a result of screening the direct arylation conditions, PPBI3T with the number average molecular weight of 14,000 was successfully synthesized, and the spectroscopic and optoelectronic analysis demonstrated the synthesis of PPBI3T with the desired structure. The random compolymerization among naphthalene bisimide (NBI)‐based monomer, PBI‐based monomer, and 3,4‐dimethylthiophene afforded the random copolymers composed of NBI‐ and PBI‐based components (P(NBI3T‐PBI3T)). The composition of each component was controlled by changing the monomer feed ratio, and furthermore, the optical and electrochemical properties of P(NBI3T‐PBI3T) were also tunable by controlling the composition of each component. To the best of our knowledge, these results were the first accomplishment for the direct arylation synthesis of PBI‐based acceptor polymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3151–3158  相似文献   

12.
ABSTRACT: Direct arylation polymerization (DAP) enabled facile synthesis of a narrow bandgap donor–acceptor conjugated polymer (PDFBT‐Th4) composed of alternating 5,6‐difluoro‐2,1,3‐benzothiadiazole and alkyl‐quaternarythiophene. The optimized reaction condition of DAP catalyzed with Pd(OAc)2/(o‐MeOPh)3P/PivOH/K2CO3 in o‐xylene led to the target polymer with a number‐average molecular weight (Mn) of 14.6 kDa without noticeable homocoupling or β‐branching defects. UV‐vis absorption spectra of PDFBT‐Th4 indicate strong interchain aggregation in films. While the C‐H selectivity and the alternating polymer structure of PDFBT‐Th4 synthesized via DAP are comparable to those of the same type polymers synthesized via Stille coupling, the batch of PDFBT‐Th4 synthesized via optimal DAP, despite its lower Mn, showed higher hole mobility in field effect transistors and larger power conversion efficiency in organic solar cell devices. These results further demonstrate the promising potential of DAP for efficient synthesis of high‐performance D‐A conjugated polymers for broad optoelectronic applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1869–1879  相似文献   

13.
A series of three new low bandgap donor–acceptor–donor–acceptor/ (D–A–D–A/) polymers have been successfully synthesized based on the combination of isoindigo as the electron‐deficient acceptor and 3,4‐ethylenedioxythiophene as the electron‐rich donor, followed by CH‐arylation with different acceptors (4,7‐dibromo[c][1,2,5]‐(oxa, thia, and/or selena)diazole ( 4a‐c )). These polymers were used as donor materials for photovoltaic applications. All of the polymers are highly stable and show good solubility in chlorinated solvents. The highest power conversion efficiency of 1.6% was achieved in the bulk heterojunction photovoltaic device that consisted of poly ((E)?6‐(7‐(benzo‐[c][1,2,5]‐thiadiazol‐4‐yl)?2,3‐dihydrothieno‐[3,4‐b][1,4]dioxin‐5‐yl)?6′‐(2,3‐dihydrothieno‐[3,4‐b][1,4]‐dioxin‐5‐yl)?1,1′‐bis‐(2‐octyldodecyl)‐[3,3′‐biindolinylidene]‐2,2′‐dione) as the donor and PC61BM as the acceptor, with a short‐circuit current density (Jsc) of 8.10 mA/cm2, an open circuit voltage (Voc) of 0.56 V and a fill factor of 35%, which indicates that these polymers are promising donors for polymer solar cell applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2926–2933  相似文献   

14.
A novel series of naphthalene‐diimide‐based semiconducting polymers ( P1–P4 ) containing benzodithiophene or dithienopyrrole were successfully synthesized for ambipolar semiconducting materials showing near infrared absorptions. The incorporation of a 3‐hexylthiophene (3HT) spacer extended the intramolecular charge‐transfer (ICT) peak from λonset = 739 nm ( P1 ) to 785 nm ( P3 ). Moreover, about 250 nm red‐shift of the ICT peaks was observed in P2 and P4 compared to P1 and P3 due to the increased high‐lying HOMO energy levels. The grazing incidence X‐ray scattering of the P3 and P4 films proved the slightly improved crystalline order in the π?π stacking direction, indicating that the planar backbone is probably due to the introduced 3HT. The P1–P4 ‐based field‐effect transistor showed n‐type dominant ambipolar characteristics. The P2 and P4 showed higher electron mobilities up to 1.5 × 10?2 cm2 V?1 s?1 than P1 and P3 , which might be influenced by the orientation of the polymer backbone and the intermolecular orbital overlap. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 359–367  相似文献   

15.
As a newly emerged protocol for the synthesis of conjugated polymers, direct arylation polymerization (DArP) is an environmentally friendly and cost-effective alternative to traditional methods of polymerization. DArP efficiently yields conjugated polymers with high yield and high molecular weight. However, DArP is also known to produce defects in polymer chemical structure. Together with molecular weight and polydispersity, these defects are considered to be important parameters of polymer structure and they have a strong impact on optical, electronic and thermal properties of conjugated polymers. The four major classes of conjugated polymer defects inherent for DArP have been identified: homocoupling regiodefects, branching defects, end group defects, and residual metal defects. To have a precise control over the polymer properties, it is important to understand what causes the defects to form during the polymerization process and be able to control their content. Here within the scope of current literature, we discuss in detail the definition and origin of all these defects, their influence on polymer properties and effective means to control the defects through fine tuning of the DArP reaction parameters. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 135–147  相似文献   

16.
A concise, highly efficient palladium‐catalyzed direct C–H (hetero)arylation is developed to modularly assemble a diketopyrrolopyrrole ( DTDPP )‐based polymer library to screen low‐bandgap and near‐infrared (NIR) absorbing materials. The DTDPP ‐based copolymers P1 and P2 with an alternating donor–acceptor–donor–acceptor (D–A–D–A) sequence and the homopolymer P9 exhibit planarity and excellent π‐conjugation, which lead to low bandgaps (down to 1.22 eV) as well as strong and broad NIR absorption bands (up to 1000 nm).  相似文献   

17.
Direct arylation polymerization between derivatives of dibromodiketopyrrolopyrrole (DPP) and thienoisoindigo (TIIG) resulted in two π‐conjugated copolymers with average molecular weights up to 24.0 kDa and bandgaps as low as 0.8 eV. The structural analysis of the obtained two polymers revealed well‐defined alternating conjugation backbones without obvious structural defects. The introduction of hexyl‐group in the β‐position of thiophene rings in the DPP units not only reduces the bandgap of conjugated polymer compared to a similar polymer containing bare‐thiophene flanked DPP but also affects polymer morphology in thin films. P‐type charge‐transport characteristics were observed for two polymers in organic field‐effect transistors with comparable hole mobilities. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3205–3213  相似文献   

18.
Conditions for selective palladium‐catalyzed decarboxylative 2‐arylation of 3‐substituted thiophene and furan derivatives bearing an ester at C2 position have been established. By using 2 mol% phosphine‐free Pd(OAc)2 as the catalyst and a mixture of KOH and K2CO3 as the bases, in dimethylacetamide, moderate to good yields of the desired 2‐arylated products were obtained. A range of functional groups such as nitrile, nitro, formyl or acetyl on the aryl bromides was tolerated. This method allows us to employ in some cases more convenient reactants in terms of cost or physical properties (boiling point) for arylations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Conjugated copolymers based on benzodithiophene (BDT) derivatives and thiophene‐quinoxaline‐thiophene (TQT) segments represent an efficient class of light harvesting materials for organic photovoltaic (OPV) applications. Commonly, BDT‐TQT copolymers are synthesized by Stille cross‐coupling polymerization. In this study, alkoxy and thienyl functionalized alternating BDT‐alt‐TQT copolymers are synthesized by direct arylation polymerization (DArP), using Ozawa conditions. An extensive optimization of the reaction conditions such as the catalytic system, solvent, temperature, base, and the concentration of the catalyst is accomplished. The optical and electrochemical properties of the copolymers obtained by DArP are compared to the reference polymers synthesized by Stille cross‐coupling polymerization. Finally, the optimized BDT‐alt‐TQT copolymers are incorporated into organic solar cells as electron donors. The solar cells of the DArP copolymers exhibit power conversion efficiencies up to 80% (rel.) of their Stille cross coupling analogues. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1457–1467  相似文献   

20.
A broad series of monomeric and polymeric squaraines was synthesized to investigate the impact of electron‐donating bridges, such as unsaturated triarylamine, carbazole, and saturated piperazine groups, on the spectroscopic and redox properties. These bridges were attached to both standard trans‐indolenine squaraines and dicyanomethylene‐substituted cis‐indolenine squaraines. The conjugates were investigated by absorption, steady‐state, and time‐resolved fluorescence spectroscopy and cyclic voltammetry. While addition of the donors resulted in significant redshift of the absorption of the model compounds, hardly any further shift or broadening was observed for the copolymers. Also the redox properties remained nearly unchanged compared with the model dyes. In contrast, immense broadening and redshift was observed for homopolymers. This behavior is explained by mostly excitonic coupling of localized squaraine transitions. The increasing distance of the chromophores determined by the bridges led to a decrease of the exciton coupling energy. We also performed semiempirical CNDO/S2 calculations on AM1 optimized structures. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 890–911  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号