首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrical transport properties of LaFe1? x Ni x O3 (0.1 ≤ x ≤ 0.6) bulk samples were investigated over a wide temperature range, i.e. 9–300 K. Powder x-ray diffraction patterns at room temperature showed that all samples were formed in a single phase. However, a structural transformation was observed from orthorhombic (Pnma) to rhombohedral crystal symmetry at x > 0.5 in Ni-doped samples, which is supported by the electrical transport analysis. Temperature-dependent resistivity data were fitted using Mott's variable-range hopping model for a limited range of temperatures to calculate the hopping distance and the density of states at Fermi level. It was found that all parameters vary systematically with an increase in Ni concentration. Moreover, the resistivity data were also fitted using the small polaron hopping (SPH) model. The non-adiabatic SPH conduction mechanism is followed up to 50% Ni concentration, whereas an adiabatic hopping conduction mechanism is active above it. Such a change in the conduction mechanism is accompanied by subtle electronically induced structural changes involving Fe3+–O–Fe3+ and Fe3+–O–Ni3+ bond angles and bond lengths. Thus, we suggest that the transport properties can be explained according to the additional delocalization of charge carriers induced by Ni doping.  相似文献   

2.
Using the density functional theory, the initial dehydrogenation of methanol on NixMy (M?=?Ni, Co, Fe, Mn, Cr, x?+?y?=?4, y?=?1, 2) clusters is investigated. Two adsorption and dehydrogenation mechanisms of methanol are studied: one proceeds along the C–H scission and another begins with the breaking of the O-H bond. The adsorption sites of methanol on the Ni or M sites of the NixMy clusters are considered. The adsorption of methanol on Ni4 cluster is stronger than those on bimetallic clusters, while the initial dehydrogenation barriers on NixMy clusters are lower than that on Ni4 cluster. The comparable energy barriers of two pathways (O–H or C–H dissociation) on Ni-based clusters indicate that these two paths are quite competitive. In addition, the Ni2M2 clusters show superior activation performance compared with the Ni3M clusters, especially for Ni2Mn2 and Ni2Cr2 clusters. The effects of alloyed metal on the catalytic activity of Ni for methanol initial dehydrogenation, including the adsorption energy, O–H or C–H bond scission barrier and frontier molecular orbital levels, are discussed. It can be concluded that the addition of Co, Fe, Mn and Cr to Ni catalyst is able to enhance the activity of the methanol dehydrogenation reaction.  相似文献   

3.
The optical absorption spectra (d-d transition bands) and covalent effect of Ni2+ ions in octahedral sites of Ca3Sc2Ge3O12 crystal have been investigated by the full energy matrix based on the two spin–orbit coupling parameters model. The bond length of octahedral site is Ri?=?2.19 Å, which can be determined by the cubic crystal-field parameter and optical spectral data. The lattice distortion of the Ni2+ center in Ca3Sc2Ge3O12 crystal is also obtained from the calculations. In addition, the result has shown that the covalent effect of Ni2+ ion in the octahedral site of Ga3Sc2Ge3O12 is obvious and cannot be ignored. The calculated d-d transition bands agree well with that of the experimental findings, suggesting that the present methods can explain reasonably the optical spectral data and covalent effect of 3d8 ions in octahedral lattices.  相似文献   

4.
The reaction mechanism of methane dehydrogenation on monomeric Rh center located on (100) γ-alumina has been theoretically investigated at the PBE0/cc-pVTZ, SDD level. The (100) face of γ-alumina support is represented by an Al8O26H28 cluster, which is cut out from the ideal crystal structure. Then, two model Rh/γ-Al2O3 catalysts, in which Rh center interacts with one oxygen or two oxygen atoms of the (100) surface of γ-Al2O3, have been compared and denoted as Rh/Al8O26H27 and Rh/Al8O26H26, respectively. Toward methane activation, the model catalyst Rh/Al8O26H27 exhibits better performance than Rh/Al8O26H26. For the first CH bond cleavage of methane, the lowering of activation barriers on Rh/Al8O26H27 is mainly caused by lower substrate activation strain ΔEstrain[substr], which is from substrate equilibrium geometry to the geometry it adopts in the TS, in comparison with that on Rh/Al8O26H26. These results are in qualitative agreement with the experimental results, where the partially reduced Rh+ is one of the active sites for methane dissociation.  相似文献   

5.
Cleavage of disulfide bonds is a common method used in linking peptides to proteins in biochemical reactions. The structures, internal rotor potentials, bond energies, and thermochemical properties (ΔfH°, S°, and Cp(T)) of the S–S bridge molecules CH3SSOH and CH3SS(=O)H and the radicals CH3SS?=O and C?H2SSOH that correspond to H‐atom loss are determined by computational chemistry. Structure and thermochemical parameters (S° and Cp(T)) are determined using density functional Becke, three‐parameter, Lee–Yang–Parr (B3LYP)/6‐31++G (d, p), B3LYP/6‐311++G (3df, 2p). The enthalpies of formation for stable species are calculated using the total energies at B3LYP/6‐31++G (d, p), B3LYP/6‐311++G (3df, 2p), and the higher level composite CBS–QB3 levels with work reactions that are close to isodesmic in most cases. The enthalpies of formation for CH3SSOH, CH3SS(=O)H are ?38.3 and ?16.6 kcal mol?1, respectively, where the difference is in enthalpy RSO–H versus RS(=O)–H bonding. The C–H bond energy of CH3SSOH is 99.2 kcal mol?1, and the O–H bond energy is weaker at 76.9 kcal mol?1. Cleavage of the weak O–H bond in CH3SSOH results in an electron rearrangement upon loss of the CH3SSO–H hydrogen atom; the radical rearranges to form the more stable CH3SS· = O radical structure. Cleavage of the C–H bond in CH3SS(=O)H results in an unstable [CH2SS(=O)H]* intermediate, which decomposes exothermically to lower energy CH2 = S + HSO. The CH3SS(=O)–H bond energy is quite weak at 54.8 kcal mol?1 with the H–C bond estimated at between 91 and 98 kcal mol?1. Disulfide bond energies for CH3S–SOH and CH3S–S(=O)H are low: 67.1 and 39.2 kcal mol?1. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The reactions of ethylene glycol and 1,2-propanediol have been studied on Pd(111) using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). Both molecules initially decompose through O–H activation, forming ethylenedioxy (–OCH2CH2O–) and 1,2-propanedioxy (–OCH2CH(CH3)O–) surface intermediates. For ethylene glycol, increases in thermal energy lead to dehydrogenation and formation of carbonyl species at both oxygen atoms. The resulting glyoxal (O═CHCH═O) either desorbs molecularly or reacts through one of two competing pathways. The favored pathway proceeds via C–C bond scission, dehydrogenation, and decarbonylation to form carbon monoxide and hydrogen. In a minor pathway, small amounts of glyoxal undergo C–O bond scission and recombination with surface hydrogen to form ethylene and water. The same reaction mechanism occurs for 1,2-propanediol after methyl elimination and formation of glyoxal. However, this is accompanied by a minor pathway involving a methylglyoxal (O=CHC(CH3)=O) intermediate. The prevalence of the dehydrogenation/decarbonylation pathway in the current work is consistent with the high selectivity for C–C scission in the aqueous phase reforming of polyols on supported Pd catalysts.  相似文献   

7.
The formation of intramolecular hydrogen bonding by certain N‐substituted 2‐acylpyrroles has been demonstrated by B3LYP/aug‐cc‐pVDZ calculations, the quantum theory of atoms in molecules, and the natural bond orbital method. Total electron energy densities HBCP at the bond critical point of the H?O bond were applied to analyze the strength of these interactions. The relations between quantum theory of atoms in molecules, carbonyl stretching vibrational modes νC = O, and natural bond orbital parameters associated with the formation of the C–H?O interaction have been established. The short contacts were found experimentally in the crystal structure of a new 2‐acylpyrrole derivative 5‐chloro‐2‐oxopentyl‐1‐(5‐chloro‐2‐oxopentyl)pyrrolo‐2‐carboxylate. The influence of 2‐ and N‐substitution of 2‐acylpyrroles on C‐H?O interaction energy is discussed. It was found that the methylene group may act as a proton donor leading to a red‐shift or blue‐shift phenomenon of the νC–H stretching mode. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
《Composite Interfaces》2013,20(4-6):407-431
Mixed ionic–electronic conducting nanocomposite La0.8Sr0.2Ni0.4Fe0.6O3 (LSNF)–Ce0.8Gd0.2O2– δ (GDC) was prepared via ultrasonic dispersion of nanocrystalline powders of perovskite and fluorite oxides in water with addition of surfactant, followed by drying and sintering up to 1300°C. Analysis of the real structure of nanocomposite (studied by XRD and TEM with EDX) and its surface composition (studied by XPS) revealed moderate redistribution of elements between phases favoring their epitaxy. Results of impedance spectroscopy, oxygen isotope exchange, O2 TPD and H2 TPR experiments revealed a positive effect of composite interfaces on the oxygen mobility and reactivity agreeing with the ambipolar transport behavior of MIEC composite. Preliminary testing of button-size cell with functionally graded LSNF–GDC cathode layer supported on thin YSZ layer covering Ni/YSZ cermet demonstrated high and stable performance, which is promising for its practical application.  相似文献   

9.
Several iridium supported catalyst were studied by means of x-ray photoelectron spectroscopy. These catalysts contain 5 wt. % iridium impregnated from aqueous solution of hexachloroiridic acid on δ-alumina, silica, zinc oxide, titanium oxide and Ketjen silica alumina and are used in catalytic oxidation of olefins.Photoelectron spectra of oxides, impregnated oxides and hydrogen reduced catalysts have been recorded. Chemical shifts observed on impregnated oxides indicate that alumina and titanium oxide make possible the reduction of some of the hexachloroiridates ions into an iridium(III) chloro complex. This reaction is not detected with zinc oxide and silica.For the reduced catalysts, the iridium 4f doublet is shifted to higher binding energies with respect to that of unsupported iridium and the iridium lines have an anomalous breadth. We have postulated that an electronic interaction occurs between the support acting as an electron acceptor and the metal acting as an electron donor. The chemical shifts depend on the nature of the support, increasing ZnO < SiO2 < TiO2 < Al2O3, and may be correlated with the Fermi level in the metallic oxide. With silica-alumina and progressively de-aluminated silica-alumina, a simultaneous variation of the iridium chemical shift and catalytic activity is observed.  相似文献   

10.
In the present work, the dynamic 1H NMR effects were investigated at variable temperatures within a particular phosphorus ylide involving a 2‐benzoxazolinone around the carbon–carbon single bond and also partial carbon–carbon double bond in two Z‐ and E‐rotational isomers. Activation and kinetic parameters including ΔH, ΔG, ΔS and Ea were determined in accord with the dynamic 1H NMR data for three rotational processes. In addition, theoretical studies based upon rotation around the same bonds were investigated using ab initio and DFT methods at the HF/6‐31G(d,p) and B3LYP/6‐31G(d,p) levels of theory. Theoretical activation and kinetic parameters including ΔH, ΔG, ΔS and Ea were calculated at 298 K and experimental temperatures for five rotational processes. These results (experimental and theoretical), taken together, indicate that the rotational energy barrier around the C = C double bond was considerably high and the observation of the two rotational isomers was impossible (seen as a single isomer) at the high temperatures, in this case rotation around the C = C bond was too fast on the NMR time scale. When the temperature was relatively low, the rate of rotation was sufficiently slow; therefore, observation of the two Z‐ and E‐isomers was possible. In addition, calculations at the HF/6‐31G(d,p) level of theory showed very favorable results in agreement with the experimental data on rotation around the C = C bond. While, B3LYP level using the 6‐31G(d,p) basis set was provided the reasonable data for the restricted rotations around the C–C and C–N single bond. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The longitudinal relaxation timeT 1 and the second momentM 2 of1H nuclear magnetic resonance line in a wide temperature range have been measured for acetylcholine chloride. Two different types of the methyl groups reorientation occurred. The first type was the hindered rotation of the methyl group denoted as C(1)H3 about the threefold symmetry axis. The second type was the reorientation of the trimethyl group-N(CH3)3 around the pseudo C3 axis of C(6)-N(7) bond, which accompanied the standard C3 motion of the methyl group. The Dunn-McDowell model was applied to analyze the dynamics observed.  相似文献   

12.
LiMn1.5Ni0.5O4 is synthesized by a sol–gel method and the intercalation kinetics as positive electrode for lithium-ion batteries is investigated by EIS. LiMn1.5Ni0.5O4 particles prepared via sol–gel process possess spinel phase with Fd-3m space group. The charge-transfer resistance, the exchange-current density and the solid-phase diffusion are found as a function of temperature. The apparent activation energy of the exchange current, the charge transfer, and the lithium diffusion in solid phase are also determined, respectively. This result indicates that the effect of the temperature on the cell capacity and the current dependence of the capacity results mainly from the enhancement of the lithium diffusion at elevated temperatures. It can be concluded that LiMn1.5Ni0.5O4 cell has a bad rate cycling performance at elevated temperatures before any modification due to the high diffusion apparent activation energy. The relevant theoretical elucidations thus provide us some useful insights into the design of novel LiMn1.5Ni0.5O4-based positive-electrode materials.  相似文献   

13.
In a recent work (Org. Lett. 2012, 14, 358–361), we showed that the activation by benzylation of alkoxyamine 1 (diethyl (1‐(tert‐butyl(1‐(pyridin‐4‐yl)ethoxy)amino)‐2,2‐dimethylpropyl)phosphonate) afforded a surprisingly large C–ON bond homolysis rate constant kd. Taking advantage of the easy preparation of para‐X‐benzyl‐activated alkoxyamines 2 and of the presence of a shielding methylene group between the two aromatic moieties, we investigated the long range (10 bonds between the X group and the C–ON bond) polar effect for X = H, F, OMe, CN, NO2, NMe2, +NHMe2,Br?. It was observed that the effect was weak (4‐fold) and mainly due to the zwiterionic mesomeric forms generated by the presence of group X on the para position, i.e. kd increased for CN and NO2 and decreased for OMe, NMe2 and +NMe2H,Br?. DFT calculations at the B3LYP/6‐31G(d,p) level were performed to determine orbital interactions (natural bond orbital (NBO) analysis), Mulliken and NBO charges which support the reactivity described. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

Density functional theory calculations, using the B3LYP parameterisation, were performed to determine structures, vibrational frequencies, and binding energies for complexation of Ni+ and Ni2+ cations with benzene and naphthalene molecules and clusters. The calculations employed the Stuttgart basis set with ECP pseudo potentials for the Ni cations and basis sets of at least triple ζ plus polarisation, and diffuse quality for C and H. The effect of electron correlation on non-bonded interactions was accounted for by the Grimme GD3 dispersion correction. Counterpoise computations were made for BSSE. Comparison between experiment and theory provide fascinating new insight into the bonding for these prototypical organometallic (OM) complexes. These structures have a sandwich topology, indicating major structural reorganisations occuring when benzene or naphthalene interact with Ni cations. Adiabatic electron affinities and ionisation potentials agree well with experiment when available. Binding energies were also determined, providing insight into the stability of the complexes. The results presented here provide important information for future studies to address additional investigations of both problems of the electronic structure properties of these complexes, as well as the role of the polycyclic aromatic hydrocarbons (PAHs) in the interstellar medium (ISM) and soot formation in combustion. The Ni+/Ni2+ + aromatic organometallic bonding is of the same order of stability as an aromatic C–H bond. Such bonding modifies the IR spectrum of the complexed aromatic molecules by enhancing the 3.3?μm feature and decreasing the C–H bands in the 11–12?μm range (γ C–H). Organometallic complexation reactions may contribute significantly to metal depletion in the ISM.  相似文献   

15.
BaO oxide is the main storage component of the NOx storage and reduction catalysts. Herein, the interactions between the NO2 molecule and the unsupported as well as γ-Al2O3 supported BaO clusters have been studied using the first principle density functional theory calculation. Our results indicated that there is a strong synergetic effect involving both the BaO clusters and the surface of the γ-Al2O3 substrate toward NO2 adsorption. The interfacial region between the monodispersed BaO cluster and the substrate surface that allows NO2 to bond with the cluster and the surface simultaneously was shown to be optimal for NO2 adsorption.  相似文献   

16.
To obtain direct evidence of the formation of the Ni–Mo–S phase on NiMo/Al2O3 catalysts under high‐pressure hydrodesulfurization conditions, a high‐pressure EXAFS chamber has been constructed and used to investigate the coordination structure of Ni and Mo species on the catalysts sulfided at high pressure. The high‐pressure chamber was designed to have a low dead volume and was equipped with polybenzimidazole X‐ray windows. Ni K‐edge k3χ(k) spectra with high signal‐to‐noise ratio were obtained using this high‐pressure chamber for the NiMo/Al2O3 catalyst sulfided at 613 K and 1.1 MPa over a wide k range (39.5–146 nm?1). The formation of Ni–Mo and Mo–Ni coordination shells was successfully proved by Ni and Mo K‐edge EXAFS measurement using this chamber. Interatomic distances of these coordination shells were almost identical to those calculated from Ni K‐edge EXAFS of NiMo/C catalysts sulfided at atmospheric pressure. These results support the hypothesis that the Ni–Mo–S phase is formed on the Al2O3‐supported NiMo catalyst sulfided under high‐pressure hydrodesulfurization conditions.  相似文献   

17.
The optical absorption spectra, microstructure and electronic spin resonance parameters (electronic spin resonance (ESR) g factor) for Ni2+ ions at octahedral centers of nickel ferrite nanoparticles are calculated from the two-spin–orbit-parameter model. The effect of spin–orbital coupling of the central metal 3d8 ions and ligand oxygen ions has been taken into account in the full energy matrix and ESR g formula. The calculated results are in good agreement with the observed values. In addition, the microstructures of Ni2+ ions at octahedral centers in NiFe2O4 are reasonably determined from the calculations.  相似文献   

18.
ABSTRACT

QM(UB3LYP)/MM(AMBER) calculations were performed for the locations of the transition structure (TS) of the oxygen–oxygen (O–O) bond formation in the S4 state of the oxygen-evolving complex (OEC) of photosystem II (PSII). The natural orbital (NO) analysis of the broken-symmetry (BS) solutions was also performed to elucidate the nature of the chemical bonds at TS on the basis of several chemical indices defined by the occupation numbers of NO. The computational results revealed a concerted bond switching (CBS) mechanism for the oxygen–oxygen bond formation coupled with the one-electron transfer (OET) for water oxidation in OEC of PSII. The orbital interaction between the σ-HOMO of the Mn(IV)4–O(5) bond and the π*-LUMO of the Mn(V)1=O(6) bond plays an important role for the concerted O–O bond formation for water oxidation in the CaMn4O6 cluster of OEC of PSII. One electron transfer (OET) from the π-HOMO of the Mn(V)1=O(6) bond to the σ*-LUMO of the Mn(IV)4–O(5) bond occurs for the formation of electron transfer diradical, where the generated anion radical [Mn(IV)4–O(5)]-? part is relaxed to the ?Mn(III)4?…?O(5)- structure and the cation radical [O(6)=Mn(V)1]+ ? part is relaxed to the +O(6)–Mn(IV)1? structure because of the charge-spin separation for the electron-and hole-doped Mn–oxo bonds. Therefore, the local spins are responsible for the one-electron reductions of Mn(IV)4->Mn(III)4 and Mn(V)1->Mn(IV)1. On the other hand, the O(5)- and O(6)+ sites generated undergo the O–O bond formation in the CaMn4O6 cluster. The Ca(II) ion in the cubane- skeleton of the CaMn4O6 cluster assists the above orbital interactions by the lowering of the orbital energy levels of π*-LUMO of Mn(V)1=O(6) and σ*-LUMO of Mn(IV)4–O(5), indicating an important role of its Lewis acidity. Present CBS mechanism for the O–O bond formation coupled with one electron reductions of the high-valent Mn ions is different from the conventional radical coupling (RC) and acid-base (AB) mechanisms for water oxidation in artificial and native photosynthesis systems. The proton-coupled electron transfer (PC-OET) mechanism for the O–O bond formation is also touched in relation to the CBS-OET mechanism.  相似文献   

19.
ABSTRACT

The mechanism of hydrogen abstraction reaction between HFE-7000 (i-C3F7OCH3) and OH radicals using M06-2X functional in conjunction with 6-31+G(d,p) basis set is investigated. The pre-reactive and post-reactive complexes from intrinsic reaction coordinate calculations are validated at entrance and exit channels, respectively. The standard enthalpies of formation for the species and bond dissociation energy for C–H bond are also estimated. The rate constants of the titled reactions over the temperature range of 250–450 K are reported. The OH-driven atmospheric life time of i-HFE-7000 is computed to be 3.19 years. The atmospheric fate of the alkoxy radical (i-C3F7OCH2O?) is also explored here for the first time. Three prominent plausible decomposition channels including oxidation are considered in detail. The thermochemical data reveal that reaction with O2 is the dominant path for the decomposition of i-C3F7OCH2O? radical. Moreover, rate constant for the OH-initiated hydrogen abstraction of isofluoro-propyl formate (i-C3F7OC(O)H) is also reported.  相似文献   

20.
Ksenofontov  V.  Reiman  S.  Walcher  D.  Garcia  Y.  Doroshenko  N.  Gütlich  P. 《Hyperfine Interactions》2002,139(1-4):107-112
From the 61Ni and 57Fe Mössbauer spectroscopy data follows the cationic site assignment in Li1–x Ni1+x O2. Our data explain the ferromagnetic properties of this material because of the appearance of Ni2+ (S=1) among Ni3+ (S=1/2) in Ni3+O2 hexagonal planes. We have no evidence for the ferromagnetic interaction between the NiO2 layers through the excess Ni2+ ions substituting the Li+ ions. The presence of Ni2+ found in the Ni3+O2 planes explains the absence of the Jahn–Teller distortions probably because of the electronic transfer between the Ni3+ and Ni2+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号