首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of mixed solvents provided an effective way to control the self‐assembly behavior and photophysical properties of a conjugated rod–coil block copolymer, poly(3‐hexylthiophene)‐b‐poly(ethylene oxide) (P3HT‐b‐PEO). It was shown that the balance between the π–π stacking of the P3HT and microphase separation of the copolymer could be dynamically controlled and shifted by solvent blending. Depending on the mixed solvent ratio (i.e., chloroform/methanol, anisole/chloroform, or anisole/methanol), the copolymer chains experienced different kinetic pathways, yielding a series of nanostructures such as disordered wormlike pattern, densely packed nanofibrils, and isolated nanofibrils. With the varying solvent selectivity, the P3HT‐b‐PEO chains displayed a hybrid photophysical property depending on the competition between intrachain and interchain excitonic coupling, resulting in the transformation between J‐ and H‐aggregation. Overall, this work offered an effective way to demonstrate the correlation and transformation between π–π stacking of P3HT and microphase separation, and how the conformation of P3HT chains influenced the photophysical properties of the copolymer during solvent blending. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 544–551  相似文献   

2.
In total and formal syntheses of dictyodendrins B, C, E, and F, the key step involved the direct construction of the pyrrolo[2,3‐c ]carbazole core by the gold‐catalyzed annulation of a conjugated diyne with a pyrrole to form three bonds and two aromatic rings. The subsequent introduction of substituents at the C1 (Suzuki–Miyaura coupling), C2 (addition to an aldehyde), N3 (alkylation), and C5 positions (Ullman coupling) provided divergent access to dictyodendrins.  相似文献   

3.
New methacrylate monomers with carbazole moieties as pendant groups were synthesized by multistep syntheses starting from carbazoles with biphenyl substituents in the aromatic ring. The corresponding polymers were prepared using a free‐radical polymerization. The novel polymers contain N‐alkylated carbazoles mono‐ or bi‐substituted with biphenyl groups in the aromatic ring. N‐alkyl chains in polymers vary by length and structure. All new polymers were synthesized to evaluate the structural changes in terms of their effect on the energy profile, thermal, dielectric, and photophysical properties when compared to the parent polymer poly(2‐(9H‐carbazol‐9‐yl)ethyl methacrylate). According to the obtained results, these compounds may be well suited for memory resistor devices. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 70–76  相似文献   

4.
Poly(phenylenevinylene)‐based conjugated polymers with azobenzene groups in the main chains were prepared by the Pd‐catalyzed coupling polymerization of divinylarenes with dihaloarenes. The Pd‐catalyzed coupling polymerization of 4,4′‐divinylazobenzene with dihaloarenes such as 1,3‐dibromobenzene, 1,4‐dibromo‐2,5‐dihexylbenzene, 4,4′‐dibromoazobenzene, and 4,4′‐diiodoazobenzene resulted in polymers with poor solubility. In contrast, soluble polymers containing azobenzene moieties in the main chains were attainable from divinylbenzenes with 4,4′‐dihaloazobenzenes if either or both of the monomers possessed hexyl groups on the aromatic rings. The number‐average molecular weight of the polymer exceeded 10,000 under optimized conditions, and the polymer showed a remarkably redshifted absorption in the visible region (456 nm). 1H NMR and IR spectra supported that the polymers having only trans‐geometry for the double bonds. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1057–1063, 2000  相似文献   

5.
2,3‐Diaryl substituted maleimides as model compounds of conjugated maleimide polymers [poly(RMI‐alt‐Ar) and poly(RMI‐co‐Ar)] were synthesized from 2,3‐dibromo‐N‐substituted maleimide (DBrRMI) [R= cyclohexyl (DBrCHMI) and n‐hexyl (DBrHMI)] and aryl boronic acid using palladium catalysts. To clarify structures of conjugated polymer containing maleimide units at the main chain, 13C NMR spectra of 2‐aryl or 2,3‐diaryl substituted maleimides were compared with those of N‐substituted maleimide polymers. Copolymers obtained with DBrRMI via Suzuki‐Miyaura cross‐coupling polymerizations or Yamamoto coupling polymerizations were dehalogenated structures at the terminal end. This dehalogenation may contribute to the low polymerizability of DBrRMIs. On the other hand, the π‐conjugated compounds showed high solubility in common organic solvents. The N‐substituents of maleimide cannot significantly affect the photoluminescence spectra of 2,3‐diaryl substituted maleimides derivatives. The fluorescence spectra of poly(RMI‐alt‐Ar) and poly(RMI‐co‐Ar) varied with N‐substituents of the maleimide ring. When exposed to ultraviolet light of wavelength 352 nm, a series of 1,4‐phenylene‐ and/or 2,5‐thienylene‐based copolymers containing N‐substituted maleimide derivatives fluoresced in a yellow to blue color. It was found that photoluminescence emissions and electronic state of π‐conjugated maleimide derivatives were controlled by aryl‐ and N‐substituents, and maleimide sequences of copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
This article describes the syntheses and electro‐optical applications of liquid crystalline (LC) conjugated polymers, for example, poly(p‐phenylenevinylene), polyfluorene, polythiophene, and other conjugated polymers. The polymerization involves several mechanisms: the Gilch route, Heck coupling, or Knoevenagel condensation for poly(p‐phenylenevinylene)s, the Suzuki‐ or Yamamoto‐coupling reaction for polyfluorenes, and miscellaneous coupling reactions for other conjugated polymers. These LC conjugated polymers are classified into two types: conjugated main chain polymers with long alkyl side chains, namely main‐chain type LC polymers, and conjugated polymers grafting with mesogenic side groups, namely side‐chain type LC conjugated polymers. In general, the former shows higher transition temperature and only nematic phase; the latter possesses lower transition temperature and more mesophases, for example, smectic and nematic phases, depending on the structure of mesogenic side chains. The fully conjugated main chain promises them as good candidates for polarized electroluminescent or field‐effect devices. The polarized emission can be obtained by surface rubbing or thermal annealing in liquid crystalline phase, with maximum dichroic ratio more than 20. In addition, conjugated oligomers with LC properties are also included and discussed in this article. Several oligo‐fluorene derivatives show outstanding polarized emission properties and potential use in LCD backlight application. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2713–2733, 2009  相似文献   

7.
A series of triphenylamine‐based polymers containing electron‐donating methoxy (? OCH3) and electron‐withdrawing cyano or nitro (? CN or ? NO2) substituents in the main chains have been designed and investigated. These conjugated polymers ( P1 – P3 ) could be readily prepared by oxidative coupling polymerization from monomers ( M1 – M3 ) using FeCl3 as an oxidant. The P2 and P3 exhibited moderate high Tg values (203–205 °C) and thermal stability. These polymers in NMP solution showed UV–vis absorption around 288–404 nm and photoluminescence peaks around 435–492 nm. P1 – P3 showed reversible oxidation redox couples at Eonset = 0.67, 0.99, and 1.00 V in solution of 0.1 M tetrabutylammonium perchlorate (TBAP)/acetonitrile (CH3CN), respectively. M3 and P3 exhibited reversible reduction redox couples at Eonset = ?1.04 and ?1.03 V. These polymers also revealed electrochromic characteristic changing color at different potential. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 285–294, 2009  相似文献   

8.
The activated polymerization of 2‐ethynylpyridine by using 2‐thiophenecarbonyl chloride yielded the corresponding conjugated ionic polymer, poly[2‐ethynyl‐N‐(2‐thiophenecarbonyl)pyridinium chloride] (PETCPC). The polymerization proceeded well to give high yield of polymer without any additional initiator or catalyst. The instrumental analysis data on polymer structure indicated that the present ionic polymer have a conjugated polymer backbone system having N‐(2‐thiophenecarbonyl)pyridinium chloride as substituents. The photoluminescence maximum peak of PETCPC was located at 573 nm, which corresponds to the photon energy of 2.16 eV. The aromatic functional substituents in the conjugated backbone system shift PL maximum values because it makes different molecule arrangement. The cyclovoltamograms of PETCPC exhibited the electrochemically stable window at ?1.24 to 1.80 V region. It was found that the kinetics of the redox process of polymer might be controlled by the reactant diffusion process from the experiment of the oxidation current density of polymer versus the scan rate. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6153–6162, 2009  相似文献   

9.
Azobenzene switches its structure instantaneously by reversible trans‐to‐cis and cis‐to‐trans photoisomerization with light irradiations. Dynamic change in polymer structure is expected via introducing an azobenzene unit into the main chain. In this study, a set of methyl‐substituted azobenzene–carbazole conjugated copolymers is synthesized by the Suzuki–Miyaura coupling method. Introduction of methyl substituents to the azobenzene unit of the monomer, and polymerization in a high‐boiling solvent improve the molecular weight of the polymer. Decrease of effective conjugation length due to the twisted structure of the main chain allows progress of photoisomerization. The microstructure of the polymer was determined with grazing incidence X‐ray diffraction (GIXD) measurements using synchrotron radiation. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1756–1764  相似文献   

10.
For the synthesis of brush‐shaped conjugated polymers consisting of a poly(phenylene butadiynylene) backbone and well‐defined poly(vinyl ether) (polyVE) side chains, we designed polyVE‐based macromonomers bearing a diethynyl benzene group at the terminus and applied them to the grafting through synthesis. The macromonomer (DE‐PIBVE) was synthesized by living cationic polymerization of isobutyl VE (IBVE) using a functionalized initiator (TMS‐DEVE‐TFA) having a TMS protected diethynyl benzene moiety, followed by deprotection of the TMS groups. As a result, we succeeded in the synthesis of the target brush‐shaped conjugated polymers [poly(DE‐PIBVE)] by oxidative coupling reaction of the diethynyl benzene groups. We found that the solution of poly(DE‐PIBVE) with a specific side chain length exhibited solvatochromism and thermochromism depending on the polarity of the media employed. This phenomenon was attributed to self‐assembly in polar media due to the intermolecular ππ interaction between neighboring conjugated polymer backbones, where the self‐assembly behavior would be closely related to the pendant polyVE structure. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3318–3325  相似文献   

11.
We investigated new polyaniline copolymers with solvent‐mimic side chains for enhanced processability in various solvents. The solvent‐mimic side chains, benzyloxypropoxy (BOP), phenoxybutoxy (POB), and dihydroxypropoxy (DHP), were introduced into copolymers and used with nonpolar aromatic and polar alcoholic solvents, respectively. Compared to a polyaniline homopolymer, polyaniline copolymers with a small amount of side chains (<4 mol %) exhibit different physical properties, including film‐forming ability. This can be attributed to the solvent‐mimic side chains strongly interacting with the solvent and/or the polyaniline backbone. Especially, in nonpolar aromatic solvents, polyaniline copolymers with nonpolar aromatic BOP and POB side chains exhibit good film‐forming ability leading to high electrical conductivity, while the polyaniline homopolymer did not form a film. Therefore, introducing solvent‐mimic side chains in conducting polymers is a very attractive method of enhancing their processability and physical properties. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1986–1995  相似文献   

12.
7‐(o‐Substituted phenyl)‐2,6‐dimethyl‐1,4‐benzoquinone methides which have an electron‐donating methoxy‐(o‐OMe, 2a ) and methyl‐ (o‐Me, 2b ) substituents or an electron‐withdrawing cyano‐ (o‐CN, 2c ) and trifluoromethyl‐ (o‐CF3, 2d ) substituents at the ortho‐position of the aromatic ring and 7‐(m‐substituted phenyl)‐2,6‐dimethyl‐1,4‐benzoquinone methide with an electron‐withdrawing trifluoromethyl‐ (m‐CF3, 2e ) substituent at the meta‐position of the aromatic ring were synthesized, and their asymmetric anionic polymerizations using the complex of lithium 4‐isopropylphenoxide with (?)‐sparteine were carried out in toluene at 0 °C. The polymers with negative optical activity were obtained for all of five monomers, and their specific rotation values largely changed depending upon the substituents of the monomers. On the basis of the comparison of various substituents effects, it was found that the specific rotation of obtained polymers is significantly affected by the electronic effects such as inductive and resonance effects rather than the steric and electrostatic effects of the substituent. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1048–1058  相似文献   

13.
An investigation into the preparation of poly(9‐alkyl‐9H‐carbazole‐3,6‐diyl)s with palladium catalyzed cross‐coupling reactions of 3‐halo‐6‐halomagnesio‐9‐alkyl‐9H‐carbazoles, generated in situ from their corresponding 3,6‐diiodo‐ and 3,6‐dibromo‐derivatives was undertaken. Monomers with a range of alkyl group substituents with different steric requirements were investigated and their effects on the polymerization were studied. The effects of the nature of halogen substituents on the polymerization reaction were also investigated. Structural analysis of the polymers revealed exclusive 3,6‐linkage between consecutive carbazole repeat units on the polymer chains. The physical properties of these polymers were investigated with spectroscopic, thermal gravimetric analysis, and electrochemical studies. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6041–6051, 2004  相似文献   

14.
Novel naphtho[1,2‐b:5,6‐b′]dithiophene (NDT) and diketopyrrolopyrrole (DPP)‐containing donor‐acceptor conjugated polymers (PNDTDPPs) with different branched side chains were synthesized via Pd(0)‐catalyzed Stille coupling reaction. Octyldodecyl (OD) and dodecylhexadecyl (DH) groups were tethered to the DPP units as the side chains. The soluble fraction of PNDTDPP‐OD polymer in chloroform has much lower molecular weight than that of PNDTDPP‐DH polymer. PNDTDPP‐DH polymer bearing relatively longer DH side chains exhibited much better charge‐transport behavior than PNDTDPP‐OD polymer with shorter OD side chains. The thermally annealed PNDTDPP‐DH polymer thin films exhibited an outstanding charge carrier mobility of ~1.32 cm2 V?1 s?1 (Ion/Ioff ~ 108) measured under ambient conditions, which is almost six times higher than that of thermally annealed PNDTDPP‐OD polymer thin films. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5280–5290  相似文献   

15.
A poly(p‐phenylenevinylene) derivative bearing conjugated side chains (polyCPV) was synthesized by Migita‐Kosugi‐Stille type coupling polycondensation reaction. This polymer contains phenylenevinylene units in both the main chain and the side chains. UV–vis absorption and fluorescence emission spectroscopies revealed a well‐developed π‐conjugation of the polyCPV. The absorption band of the polymer was extended to long wavelengths. A fluorescent emission maximum of polyCPV is located at considerably longer wavelengths than that of the conjugated side chain monomer. Electron spin resonance measurements of polyCPV confirmed generation of charge species in both the main chain and the side chains via iodine doping. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Novel bi‐triphenylamine‐containing aromatic dibromide M3 , N,N‐bis(4‐bromophenyl)‐N′,N′‐dipheny‐l,4‐phenylenediamine, was successfully synthesized. The novel conjugated polymer P1 having number‐average molecular weight of 1.31 × 104 was prepared via Suzuki coupling from the dibromide M3 and 9,9‐dioctylfluorene‐2,7‐diboronic acid bis(1,3‐propanediol) ester. Polymer P1 had excellent thermal stability associated with a high glass‐transition temperature (Tg = 141 °C). The hole‐transporting and UV‐vis‐near‐infrared electrochromic properties were examined by electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the conjugated polymer films cast onto indium‐tin oxide‐coated glass substrates exhibited two reversible oxidation redox couples at E1/2 values of 0.73 and 1.13 V versus Ag/Ag+ in acetonitrile solution. The hole mobility of the conjugated polymer P1 revealed ~10?3 cm2 V?1 s?1, which is much higher than that of other conjugated polymer systems. The observed UV‐vis‐near‐infrared absorption change in the conjugated polymer film P1 at applied potentials ranging from 0.00 to 1.23 V are fully reversible and associated with strong color changes from pale yellowish in its neutral form to green and blue in its oxidized form. Using a combination of experimental study and theoretical investigation, we proposed an oxidation mechanism based on molecular orbital theory, which explains the cyclic voltammetry experimental results well. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
A poly[benzodithiophene‐alt‐di‐2‐thienyl‐quinoxaline] series (PBDTDPQ‐EH, PBDTDPQ‐OD, and PBDTDPQ‐HDT) was synthesized via Stille coupling. Deep highest occupied molecular orbital (HOMO) levels were achieved by the introduction of 2‐decyl‐4‐hexyl‐thiophen‐yl (HDT) side chains. The introduction of the various side chains increased the molecular weight of the polymers, and the polymers dissolved well in common organic solvents at room temperature. The HOMO energy level (?5.20 to ?5.49 eV) decreased because of the 2D conjugated structure. X‐ray diffraction analysis showed that PBDTDPQ‐OD had a slightly edge‐on structure. In the case of PBDTDPQ‐HDT, however, the structure was amorphous due to the thiophene side chain, and the extent of π stacking increased. After fabricating bulk‐heterojunction‐type polymer solar cells, the OPV characteristics were evaluated. The values of open‐circuit voltage (Voc), short‐circuit current (Jsc), fill factor, and power conversion efficiency (PCE) were 0.88 V, 7.9 mA cm?2, 45.4%, and 3.2%, respectively. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1028–1036  相似文献   

18.
Charge transport in conjugated polymers may be governed not only by the static microstructure but also fluctuations of backbone segments. Using molecular dynamics simulations, we predict the role of side chains in the backbone dynamics for regiorandom poly(3‐alkylthiophene‐2,5‐diyl)s (P3ATs). We show that the backbone of poly(3‐dodecylthiophene‐2‐5‐diyl) (P3DDT) moves faster than that of poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) as a result of the faster motion of the longer side chains. To verify our predictions, we investigated the structures and dynamics of regiorandom P3ATs with neutron scattering and solid state NMR. Measurements of spin‐lattice relaxations (T1) using NMR support our prediction of faster motion for side chain atoms that are farther away from the backbone. Using small‐angle neutron scattering (SANS), we confirmed that regiorandom P3ATs are amorphous at about 300 K, although microphase separation between the side chains and backbones is apparent. Furthermore, quasi‐elastic neutron scattering (QENS) reveals that thiophene backbone motion is enhanced as the side chain length increases from hexyl to dodecyl. The faster motion of longer side chains leads to faster backbone dynamics, which in turn may affect charge transport for conjugated polymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1193–1202  相似文献   

19.
We report a novel approach for fabrication of multifunctional conjugated polymers, namely poly(p‐phenylene)s (PPPs) possessing polypeptide (poly‐l ‐lysine, PLL) and hydrophilic poly(ethylene glycol) (PEG) side chains. The approach is comprised of the combination of Suzuki coupling and in situ N‐carboxyanhydride (NCA) ring‐opening polymerization (ROP) processes. First, polypeptide macromonomer was prepared by ROP of the corresponding NCA precursor using (2,5‐dibromophenyl)methanamine as an initiator. Suzuki coupling reaction of the obtained polypeptide and PEG macromonomers both having dibromobenzene end functionality using 1,4‐benzenediboronic acid as the coupling partner in the presence of palladium catalyst gave the desired polymer. A different sequence of the same procedure was also employed to yield polymer with essentially identical structure. In the reverse sequence mode, low molar mass monomer (2,5‐dibromophenyl)methanamine, and PEG macromonomer were coupled with 1,4‐benzenediboronic acid in a similar way followed by ROP of the L‐Lysine NCA precursor through the primary amino groups of the resulting polyphenylene. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1785–1793  相似文献   

20.
Four new D—A type copolymers with 2D‐conjugated side‐chain identified PfToBT, PbToBT, PfTDPP and PbTDPP, containing two acceptors 4,7‐dithien‐2‐yl‐benzo[c][1,2,5]thiadiazole (DTBT), and diketopyrrolopyrrole (DPP) linked by thiophene donors, are obtained using Pd‐catalyzed Stille‐coupling reaction. These polymers show a broad visible‐near‐infrared absorption band (Eg = 1.79–1.66 eV) and possess a relatively low‐lying HOMO level at ?5.34 to ?5.12 eV. All the polymer:PC70BM blend films showed edge‐on structure and have similar dπ‐spacing values. According to the structure of conjugated side‐chain, the vertical distributions of polymer chains and PC70BM within the BHJ (bulk heterojunction) were different. When DPP used as an acceptor, conjugated side chains of the polymer coexisted with PC70BM in same position. The BHJ film prepared from PfToBT, PbToBT had a discontinuous network between polymer and PC70BM, whereas films from PfTDPP and PbTDPP formed continuous and evenly distributed network between them. This optimized vertical morphology promotes hole transport along respective pathways of polymers and fullerenes in the vertical direction, leading to high JSC. PbTDPP shows PCE up to 2.9% (Jsc of 9.4 mA/cm2, Voc of 0.68 V, and FF of 0.44). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2746–2759  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号