首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two D–π–A copolymers, based on the benzo[1,2‐b:4,5‐b′]‐dithiophene (BDT) as a donor unit and benzo‐quinoxaline (BQ) or pyrido‐quinoxaline (PQ) analog as an acceptor (PBDT‐TBQ and PBDT‐TPQ), were designed and synthesized as a p‐type material for bulk heterojunction (BHJ) photovoltaic cells. When compared with the PBDT‐TBQ polymer, PBDT‐TPQ exhibits stronger intramolecular charge transfer, showing a broad absorption coverage at the red region and narrower optical bandgap of 1.69 eV with a relatively low‐lying HOMO energy level at ?5.24 eV. The experimental data show that the exciton dissociation efficiency of PBDT‐TPQ:PC71BM blend is better than that in the PBDT‐TBQ:PC71BM blend, which can explain that the IPCE spectra of the PBDT‐TPQ‐based solar cell were higher than that of the PBDT‐TBQ‐based solar cell. The maximum efficiency of PBDT‐TPQ‐based device reaches 4.40% which is much higher than 2.45% of PBDT‐TBQ, indicating that PQ unit is a promising electron‐acceptor moiety for BHJ solar cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1822–1833  相似文献   

2.
A novel combination of atom transfer radical polymerization (ATRP) and redox polymerization is here used to allow instrument‐free visualization of special biomolecules for which dynamic polymer growth is used in signal amplification. In this method, the convenient and mild redox polymerization‐assisted amplification with cerium ammonium (IV) nitrate as oxidant at the second stage was achieved by directly using the hydroxyl groups from poly(hydroxyethyl methacrylate) (PHEMA) synthesized via ATRP at the first stage. The brushed polymers poly(hydroxylethyl methacrylate)‐branched‐poly (acrylamide) (PHEMA‐branched‐PAM) prepared by successive ATRP and redox polymerization in situ drastically grew up at the detected biomolecules spot to improve the visibility of biomolecule and simplify the detection procedure. With the proposed strategy, the signal amplification of streptavidin (SA) as model detected biomolecule was investigated on two different substrates such as silicon wafer and gold, respectively. As a result, detection limit of SA was demonstrated on the gold substrates where binding of 1.0 ng/mL SA was differentiable from the background using ellipsometry. Moreover, binding of 0.5 nmol/L DNA led to visually distinguishable spots on the gold surface under mild condition. The proposed method exhibited an efficient amplification performance for molecules detection, and paved a new way for visual diagnosis of biomolecules. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2791–2799  相似文献   

3.
Three 2,3‐bis(5‐hexylthiophen‐2‐yl)‐6,7‐bis(octyloxy)‐5,8‐di(thiophen‐2‐yl)‐quinoxaline ( BTTQ )‐based conjugated polymers, namely, PF‐BTTQ ( P1 ), PP‐BTTQ ( P2 ), and PDCP‐BTTQ ( P3 ), were successfully synthesized for efficient polymer solar cells (PSCs) with electron‐rich units of fluorene and dialkoxybenzene and electron‐deficient unit dicyanobenzene, respectively. All the polymers exhibited good solubility in common organic solvents and good thermal stability. Their deep‐lying HOMO energy levels enabled them good stability in the air and the relatively low HOMO energy level assured a higher open circuit potential when used in PSCs. Bulk‐heterojunction solar cells were fabricated using these copolymers blended with a fullerene derivative as an acceptor. All of them exhibited promising performance, and the best device performance with power conversion efficiency up to 3.30% was achieved under one sun of AM 1.5 solar simulator illumination (100 mW/cm2). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
Three novel low‐bandgap copolymers containing alkylated 4,7‐dithien‐2‐yl‐2,1,3‐benzothiadiazole (HBT) and different electron‐rich functional groups (dialkylfluorene (PFV‐HBT), dialkyloxyphenylene (PPV‐HBT) and dialkylthiophene (PTV‐HBT)) were prepared by Horner polycondensation reactions and characterized by 1H NMR, gel permeation chromatography, and elemental analysis. The alkyl side chain brings these polymeric materials good solubility in common organic solvents, which is critical for the manufacture of solar cells in a cost‐effective manner. The copolymers exhibit low optical bandgap from 1.48 to 1.83 eV. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the copolymers were measured by cyclic voltammetry. Theoretical calculations revealed that the variation laws of HOMO and the LUMO energy levels are well consistent with cyclic voltammetry measurement. The bulk heterojunction photovoltaic devices with the structure of ITO/PEDOT‐PSS/polymer:PCBM/LiF/Al were fabricated by using the three copolymers as the donor and (6,6)‐phenyl‐C61‐butyric acid methyl ester (PCBM) as the acceptor in the active layer. The device based on PTV‐HBT:PCBM (1:4 w/w) achieved a power conversion efficiency of 1.05% under the illumination of AM 1.5, 100 mW/cm2. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

5.
A series of three new 1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole‐based polymers such as poly[1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole] ( PTPT ), poly[1,4‐(2,5‐bis(octyloxy)phenylene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PPTPT ), and poly[2,5‐(3‐octylthiophene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PTTPT ) were synthesized and characterized. The new polymers were readily soluble in common organic solvents and the thermogravimetric analysis showed that the three polymers are thermally stable with the 5% degradation temperature >379 °C. The absorption maxima of the polymers were 478, 483, and 485 nm in thin film and the optical band gaps calculated from the onset wavelength of the optical absorption were 2.15, 2.20, and 2.13 eV, respectively. Each of the polymers was investigated as an electron donor blending with PC70BM as an electron acceptor in bulk heterojunction (BHJ) solar cells. BHJ solar cells were fabricated in ITO/PEDOT:PSS/polymer:PC70BM/TiOx/Al configurations. The BHJ solar cell with PPTPT :PC70BM (1:5 wt %) showed the power conversion efficiency (PCE) of 1.35% (Jsc = 7.41 mA/cm2, Voc = 0.56 V, FF = 33%), measured using AM 1.5G solar simulator at 100 mW/cm2 light illumination. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

6.
7.
Two novel alternating π‐conjugated copolymers, poly[2,8‐(6,6′,12,12′‐tetraoctyl‐6,12‐dihydroindeno‐[1,2b]fluorene‐ alt‐5(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole) ( P1 ) and poly[2,8‐(6,6′,12,12′‐tetraoctyl‐6,12‐dihydroindeno‐[1,2b]fluorene‐ alt‐5(1‐(p‐octylphenyl)‐2,5‐di(2‐thienyl)pyrrole) ( P2 ), were synthesized via the Suzuki coupling method and their optoelectronic properties were investigated. The resulting polymers P1 and P2 were completely soluble in various common organic solvents and their weight‐average molecular weights (Mw) were 5.66 × 104 (polydispersity: 1.97) and 2.13× 104 (polydispersity: 1.54), respectively. Bulk heterojunction (BHJ) solar cells were fabricated in ITO/PEDOT:PSS/polymer:PC70BM(1:5)/TiOx/Al configurations. The BHJ solar cell with P1 :PC70BM (1:5) has a power conversion efficiency (PCE) of 1.12% (Jsc= 3.39 mA/cm2, Voc= 0.67 V, FF = 49.31%), measured using AM 1.5 G solar simulator at 100 mW/cm2 light illumination. We fabricated polymer light‐emitting diodes (PLEDs) in ITO/PEDOT:PSS/emitting polymer:polyethylene glycol (PEG)/Ba/Al configurations. The electroluminescence (EL) maxima of the fabricated PLEDs varied from 526 nm to 556 nm depending on the ratio of the polymer to PEG. The turn‐on voltages of the PLEDs were in the range of 3–8 V depending on the ratio of the polymer to PEG, and the maximum brightness and luminance efficiency were 2103 cd/m2 and 0.37 cd/A at 12 V, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3169–3177, 2010  相似文献   

8.
Fluorescent polymeric nanoparticles (FPNs) with aggregation‐induced emission (AIE) property have received increasing attention and possess promising biomedical application potential in the recent years. Many efforts have been devoted to the fabrication methodologies of FPNs and significant advance has been achieved. In this contribution, a novel strategy for the fabrication of AIE‐active amphiphilic copolymers is reported for the first time based on the Ce(IV) redox polymerization. As an example, ene group containing AIE‐active dye (named as Phe‐alc) is directly grafted onto a water soluble polymer polyethylene glycol (PEG) in H2O/THF system under low temperature. Thus‐obtained amphiphilic fluorescent polymers will self‐assemble into FPNs with ultra‐low critical micelle concentration, ultra‐brightness, and great water dispersibility. Biological evaluation results suggest that the PEG‐poly(Phe‐alc) possess excellent biocompatibility and can be used for tracing their behavior in cells using confocal laser scanning microscope. These features make PEG‐poly(Phe‐alc) FPNs promising candidates for many biomedical applications, such as cell imaging, drug delivery vehicles, and targeted tracing. More importantly, many other functional groups can also be incorporated into these AIE‐active FPNs through the redox polymerization. Therefore, the redox polymerization should be a facile and effective strategy for fabrication of AIE‐active FPNs.

  相似文献   


9.
A novel class of thieno[3,2‐b]thiophene (TT) and isoindigo based copolymers were synthesized and evaluated as electron donor and hole transport materials in bulk‐heterojunction polymer solar cells (BHJ PSCs). These π‐conjugated donor‐acceptor polymers were derived from fused TT and isoindigo structures bridged by thiophene units. The band‐gaps and the highest occupied molecular orbital (HOMO) levels of the polymers were tuned using different conjugating lengths of thiophene units on the main chains, providing band‐gaps from 1.55 to 1.91 eV and HOMO levels from ?5.34 to ?5.71 eV, respectively. The corresponding lowest unoccupied molecular orbital (LUMO) levels were appropriately adjusted with the isoindigo units. Conventional BHJ PSCs (ITO/PEDOT:PSS/active layer/interlayer/Al) with an active layer composed of the polymer and PC71BM were fabricated for evaluation. Power conversion efficiency from a low of 1.25% to a high of 4.69% were achieved with the best performing device provided by the D?π?A polymer with a relatively board absorption spectrum, high absorption coefficient, and more uniform blend morphology. These results demonstrate the potential of this class of thieno[3,2‐b]thiophene‐isoindigo‐based polymers as efficient electron donor and hole transport polymers for BHJ PSCs. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

10.
A novel D–A1–D–A2 copolymer denoted as P1 containing two electron withdrawing units based on benzothiadiazole (BT) and 9‐(2‐octyldodecyl)?8H‐pyrrolo[3,4‐b] bisthieno[2,3‐f:3′,2′‐h]quinoxaline‐8,10(9H)–dione (PTQD) units was synthesized and characterized. The resulting copolymer exhibits a broad‐absorption spectrum, relatively deep lying HOMO energy level (?5.44 eV) and narrow optical bandgap (1.50 eV). Bulk heterojunction (BHJ) polymer solar cells (PSCs) based on P1 as donor and PC71BM as acceptor with optimized donor to acceptor weight ratio of 1:2 and processed with DIO/CB solvent showed good photovoltaic performance with power conversion efficiency of 6.21% which is higher than that of the device processed without solvent additive (4.40%). The absorption and morphology investigations of the active layers indicated that structural and morphological changes were induced by the solvent additive. This higher power conversion efficiency could be mainly attributed to the absorption enhancement and improved charge transported in the active layer induced by the better nanoscale morphology of the active layer. This study demonstrated that a copolymer with two different acceptor moieties in the backbone may be promising candidate as donor copolymer for solution processed BHJ PSCs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 155–168  相似文献   

11.
Two novel polymeric semiconductor materials based on naphtho[2,1‐b:3,4‐b']dithiophene (NDT), PNDT‐TTT and PNDT‐TET , were designed and synthesized. These synthesized polymers were tested in bulk heterojunction solar cells as blends with the acceptor [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM). PNDT‐TTT contained tri‐thiophene units, and PNDT‐TET contained bi‐thiophene units coupled by ethylenic linkages. Comparison to the properties of PNDT‐T , which contained single thiophene units, these polymers exhibit red‐shifted absorption spectra as a result of the enhanced conjugation lengths. These effects resulted in high short circuit currents (JSC) in the organic solar cells. The PNDT‐TET ‐ and PNDT‐TTT ‐based devices exhibited considerably better photovoltaic performances, with power conversion efficiencies of 3.5 and 3.3%, respectively, compared to the PNDT‐T ‐based device (1.3%). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4742–4751  相似文献   

12.
Three narrow‐band‐gap conjugated copolymers based on indenofluorene and triphenylamine with pendant donor‐π‐acceptor chromophores were successfully synthesized by post‐functionalization approach. All the polymers have good solubility in common solvents and excellent thermal stability. The photophysical properties, energy levels and band gaps of the polymers were well manipulated by introducing different acceptor groups onto the end of their conjugated side chains. By using different acceptor groups, the band gaps of the polymers were narrowed from 1.86 to 1.53 eV by lowering their lowest unoccupied molecular orbital levels, whereas their relatively deep highest occupied molecular orbital levels of approximately ?5.35 eV were maintained. Bulk‐heterojunction solar cells with these polymers as electron donors and (6,6)‐phenyl‐C71‐butyric acid methyl ester as acceptor showed power conversion efficiencies as high as 3.1% and high open circuit voltages more than 0.88 eV. The relationships between the performance and film morphology, energy levels, charge mobilities were discussed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
In recent years dye‐sensitized solar cells (DSSCs) have emerged as one of the alternatives for the global energy crisis. DSSCs have achieved a certified efficiency of >11% by using the I?/I3? redox couple. In order to commercialize the technology almost all components of the device have to be improved. Among the various components of DSSCs, the redox couple that regenerates the oxidized sensitizer plays a crucial role in achieving high efficiency and durability of the cell. However, the I?/I3? redox couple has certain limitations such as the absorption of triiodide up to 430 nm and the volatile nature of iodine, which also corrodes the silver‐based current collectors. These limitations are obstructing the commercialization of this technology. For this reason, one has to identify alternative redox couples. In this regard, the Co(II/III) redox couple is found to be the best alternative to the existing I?/I3? redox couple. Recently, DSSC test cell efficiency has risen up to 13% by using the cobalt redox couple. This review emphasizes the recent development of Co(II/III) redox couples for DSSC applications.  相似文献   

14.
The synthesis and characterization of building block of ethynylene‐substituted benzo[1,2‐b:4,5‐b′]dithiophene (BDT), and its application in the construction of poly(aryleneethynylene)s (PAEs) are described in this article. Alkoxy‐substituted BDT and thiazolothiazole are selected as the other copolymerized units, and polymers of PEBBDT and PEBTTZ were synthesized by Pd‐catalyzed Sonogashira coupling reaction. These polymers showed intense interchain π–π interaction and deep HOMO levels (≤ ?5.50 eV). Bulk heterojunction solar cell fabricated using PEBBDT or PEBTTZ as electron donor and PC61BM as acceptor display power conversion efficiency of 0.85 and 2.40%, respectively, under the illumination of AM1.5G, 100 mW cm?2. This study shows good prospect for the application of PAEs‐type polymers in organic solar cell. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 208–215  相似文献   

15.
A series of novel low‐bandgap triphenylamine‐based conjugated polymers ( PCAZCN , PPTZCN , and PDTPCN ) consisting of different electron‐rich donor main chains (N‐alkyl‐2,7‐carbazole, phenothiazine, and cyclopentadithinopyrol, respectively) as well as cyano‐ and dicyano‐vinyl electron‐acceptor pendants were synthesized and developed for polymer solar cell applications. The polymers covered broad absorption spectra of 400–800 nm with narrow optical bandgaps ranging 1.66–1.72 eV. The highest occupied molecular orbital and lowest unoccupied molecular orbital levels of the polymers measured by cyclic voltammetry were found in the range of ?5.12 to ?5.32 V and ?3.45 to ?3.55 eV, respectively. Under 100 mW/cm2 of AM 1.5 white‐light illumination, bulk heterojunction photovoltaic devices composing of an active layer of electron‐donor polymers ( PCAZCN , PPTZCN , and PDTPCN ) blended with electron‐acceptor [6,6]‐phenyl‐C61‐butyric acid methyl ester or [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) in different weight ratios were investigated. The photovoltaic device containing donor PCAZCN and acceptor PC71BM in 1:2 weight ratio showed the highest power conversion efficiency of 1.28%, with Voc = 0.81 V, Jsc = 4.93 mA/cm2, and fill factor = 32.1%. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

16.
17.
This article describes the synthesis and properties of the first poly(arylene‐vinylene)‐based sensitizers for application in dye‐sensitized solar cells (DSSC). The polymers were prepared by the Suzuki–Heck copolymerization of potassium vinyltrifluoroborate (PVTB) with a mixture of dibromoaryl comonomers designed to obtain macromolecules able to bind onto the photoelectrode by means of carboxyphenylene units. The copolymerization reactions were carried out in the presence of an excess of PVTB to lower the molecular weights of the polymers, which were obtained as soluble materials. The polymers poly[(9,9‐didodecyl‐2,7‐fluorenylene)‐vinylene‐co‐(carboxy‐2,5‐phenylene)‐vinylene] ( P1 ), poly[(9,9‐didodecyl‐2,7‐fluorenylene)‐vinylene‐co‐(carboxy‐2,5‐phenylene)‐vinylene‐co‐(4,7‐benzothiadiazolylene)‐vinylene] ( P2 ), and poly[(9,9‐didodecyl‐2,7‐fluorenylene)‐vinylene‐co‐(carboxy‐2,5‐phenylene)‐vinylene‐co‐2,5‐thienylene‐vinylene] ( P3 ) were used in DSSC devices, obtaining conversion efficiencies up to 0.88% ( P3 ). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
A novel donor–acceptor ( D–A ) copolymer comprising of weak electron donating BDT moiety and strong 9‐(2‐octyldodecyl)?8H‐pyrrolo[3,4‐b] bisthieno[2,3‐f:3',2'‐h] quinoxaline‐8,10(9H)‐dione (PTQD) unit denoted as P(PTQD‐BDT) was synthesized as donor material for polymer solar cells. P(PTQD‐BDT) shows a broad visible‐near‐infrared absorption band with an optical bandgap of 1.74 eV and possesses a relatively low‐lying HOMO level at ?5.28 eV. Bulk‐heterojunction polymer solar cell with the optimized blend of 1:2 (weight ratio) P(PTQD‐BDT):PC71BM (processed with chloroform) shows an open circuit voltage of 0.92 V, a short circuit current density of 7.84 mA/cm2, and a fill factor of 0.50, achieving a power conversion efficiency (PCE) of 3.61%. The PCE has been further improved to 5.55 % (Jsc = 10.34 mA/cm2, Voc = 0.88V and FF = 0.61), when 3% v ol 1,8‐diio‐dooctane (DIO) was used as solvent additive for the processing of P(PTQD‐BDT):PC71BM blended film. The enhancement in Jsc is as a result of the appropriate morphology and efficient exciton dissociation into free charge carrier. The increase in PCE has been attributed to the favorable nanoscale morphology for efficient exciton dissociation and charge transport (reduction in the electron to hole mobility ratio). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2390–2398  相似文献   

19.
The central part of the cover picture shows that the rates for long‐range charge transfer across covalent phenylene bridges can be very sensitive to the chemical substituents attached to the individual bridging units. The peripheral parts of the picture illustrate the flash–quench technique employed to investigate intramolecular charge transfer between a phenothiazine donor and a photochemically generated ruthenium(III) complex. On page 1203 , M. E. Walther and O. S. Wenger explain their experimental findings in terms of donor‐bridge energy matching for hole transfer.

  相似文献   


20.
Four new D—A type copolymers with 2D‐conjugated side‐chain identified PfToBT, PbToBT, PfTDPP and PbTDPP, containing two acceptors 4,7‐dithien‐2‐yl‐benzo[c][1,2,5]thiadiazole (DTBT), and diketopyrrolopyrrole (DPP) linked by thiophene donors, are obtained using Pd‐catalyzed Stille‐coupling reaction. These polymers show a broad visible‐near‐infrared absorption band (Eg = 1.79–1.66 eV) and possess a relatively low‐lying HOMO level at ?5.34 to ?5.12 eV. All the polymer:PC70BM blend films showed edge‐on structure and have similar dπ‐spacing values. According to the structure of conjugated side‐chain, the vertical distributions of polymer chains and PC70BM within the BHJ (bulk heterojunction) were different. When DPP used as an acceptor, conjugated side chains of the polymer coexisted with PC70BM in same position. The BHJ film prepared from PfToBT, PbToBT had a discontinuous network between polymer and PC70BM, whereas films from PfTDPP and PbTDPP formed continuous and evenly distributed network between them. This optimized vertical morphology promotes hole transport along respective pathways of polymers and fullerenes in the vertical direction, leading to high JSC. PbTDPP shows PCE up to 2.9% (Jsc of 9.4 mA/cm2, Voc of 0.68 V, and FF of 0.44). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2746–2759  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号