首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 4‐methoxy‐substituted triphenylamine‐containing homopolymer, poly [N,N‐diphenyl‐4‐methoxyphenylamine‐4′,4′′‐diyl] ( PMeOTPA ), with blue light (435 nm) fluorescence quantum efficiency up to 79% was easily prepared by oxidative coupling polymerization of N,N‐diphenyl‐4‐methoxyphenylamine ( MeOTPA ) using FeCl3 as an oxidant. Its reversible oxidation redox couple was at 0.41 V versus Fc/Fc+ in acetonitrile solution. It exhibited good thermal stability with 10% weight‐loss temperatures above 500 °C under a nitrogen atmosphere and relatively high softening temperature (154 °C). The simply designed homopolymer revealed moderate stability of electrochromic characteristics, changing color from original pale yellowish to red, and then to black. The PMeOTPA based field effect transistor also showed p‐type characteristics with significant temperature dependence. The present study suggests that PMeOTPA is a multifunctional polymer for various optoelectronic device applications. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3292–3302, 2007  相似文献   

2.
Monomers derived from 3,4‐ethylenedioxythiophene and phenylenes with branched or oligomeric ether dialkoxy substituents were prepared with the Negishi coupling technique. Electrooxidative polymerization led to the corresponding dialkoxy‐substituted 3,4‐ethylenedioxythiophene–phenylene polymers, with extremely low oxidation potentials (E1/2,p = ?0.16 to ?0.50 V vs Ag/Ag+) due to the highly electron‐rich nature of these materials. The polymers were electrochromic, reversibly switching from red to blue upon oxidation, with bandgaps at about 2 eV. The electrochemical behavior of the oligomeric ether‐substituted polymer was investigated in the presence of different metal ions. Films of the polymer exhibited electrochemical recognition for several alkali and alkaline‐earth cations with selectivity in the order Li+ > Ba2+ > Na+ > Mg2+. Cyclic voltammetry showed a decrease in the oxidation potential and an improvement in the definition of the voltammetric response, as well as an increase in the overall electroactivity of the polymer films when the concentration of the cations in the medium was increased. These results are discussed in terms of the electrostatic interactions between the complexed cation and the redox center, as well as the diffusion of the ionic species into the polymer matrix. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2164–2178, 2001  相似文献   

3.
The cationic polymerization of dimethylketene is achieved in dichloromethane at ?30 °C, using a stoichiometric mixture of aluminum bromide (AlBr3) and tetra‐n‐butylammonium bromide (n‐Bu4N+Br?) as initiator. Characterizations by 1H and 13C NMR show that the resulting polymers have a perfect polyketonic microstructure. Capillary viscosity, DSC, and SEC analysis show that for a constant monomer/initiator ratio, polymers synthesized in the presence of tetra‐n‐butylammonium bromide are more crystalline and have better properties than those produced only with AlBr3. Melting temperatures, inherent viscosities and average molecular weights are systematically higher. A good linearity is observed between ln (inherent viscosity) versus ln for the system with n‐Bu4N+Br?, showing a good control of the molecular weight by the initial feed ratio. The effect of this compound suggests a reversible equilibrium between active and dormant species, which limits the transfer and/or termination reactions, and enables a better control of the cationic polymerization. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1493–1499  相似文献   

4.
We have successfully synthesized a series of redox‐degradable hyperbranched polyglycerols using a disulfide containing monomer, 2‐((2‐(oxiran‐2‐ylmethoxy)ethyl)disulfanyl) ethan‐1‐ol (SSG), to yield PSSG homopolymers and hyperbranched block copolymers, P(G‐b‐SSG) and P(SSG‐b‐G), containing nondegradable glycerol (G) monomers. Using these polymers, we have explored the structures of the hyperbranched block copolymers and their related degradation products. Furthermore, side reaction such as reduction of disulfide bond during the polymerization was investigated by employing the free thiol titration experiments. We elucidated the structures of the degradation products with respect to the architecture of the hyperbranched block copolymer under redox conditions using 1H NMR and GPC measurements. For example, the degradation products of P(G‐b‐SSG) and P(SSG‐b‐G) are clearly different, demonstrating the clear distinction between linear and hyperbranched block copolymers. We anticipate that this study will extend the structural diversity of PG based polymers and aid the understanding of the structures of degradable hyperbranched PG systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1752–1761  相似文献   

5.
The synthesis and polymerizability of imine C?N monomers is surveyed. The investigated imines were either far more reactive than similarly substituted C?C or C?O monomers, or too stable to polymerize. Imines with electron‐attracting substituents on N favor polymerization by anionic mechanism, but led only to low molecular weight polymers. Imines with a donor substituent on N, such as N‐arylmethyleneimines, polymerized by cationic or anionic mechanism. 1‐ and 2‐Aza‐1,3‐butadienes were also rather unstable and polymerized to oligomers. The symmetrically substituted 2,3‐diaza‐1,3‐butadienes could be purified and polymerized successfully using anionic initiators, resulting in both 1,4‐ and 1,2‐structures in the polymer backbone, depending on the substituents. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
Two unsymmetric meso‐tetraferrocenyl‐containing porphyrins of general formula Fc3(FcCOR)Por (Fc=ferrocenyl, R=CH3 or (CH2)5Br, Por=porphyrin) were prepared and characterized by a variety of spectroscopic methods, whereas their redox properties were investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) approaches. The mixed‐valence [Fc3(FcCOR)Por]n+ (n=1,3) were investigated using spectroelectrochemical as well as chemical oxidation methods and corroborated with density functional theory (DFT) calculations. Inter‐valence charge‐transfer (IVCT) transitions in [Fc3(FcCOR)Por]+ were analyzed, and the resulting data matched closely previously reported complexes and were assigned as Robin–Day class II mixed‐valence compounds. Self‐assembled monolayers (SAMs) of a thioacetyl derivative (Fc3(FcCO(CH2)5SCOCH3)Por) were also prepared and characterized. Photoelectrochemical properties of SAMs in different electrolyte systems were investigated by electrochemical techniques and photocurrent generation experiments, showing that the choice of electrolyte is critical for efficiency of redox‐active SAMs.  相似文献   

7.
Redox‐active polymers draw significant attention as active material in secondary batteries during the last decade. A new anthraquinone‐based redox‐active monomer was designed, which electrochemical behavior was tailored by mono‐modification of one keto group. The monomer exhibits two one‐electron redox reactions and has a low molar mass, resulting in a high theoretical capacity of 207 mAh/g. The polymerization of the monomer was optimized by variation of solvent and initiator. Moreover, the electrochemical behavior was studied using cyclic voltammetry and the polymer was used as active material in a composite electrode in lithium organic batteries. The polymer reveals a cell potential of 2.3 V and a promising capacity of 137 mAh/g. During the first 100 cycles, the capacity drops to 85% of the initial value. The influence of the charging speed on the charging/discharging properties of the batteries was further investigated. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2517–2523  相似文献   

8.
Redox‐active polymers enhanced the focus of attention in the field of battery research in recent years. Anthraquinone is one of the most generic redox‐active functional compounds for battery applications, because the quinonide structure undergoes a redox reaction involving two electrons and features stable electrochemical behavior. Although various redox‐active polymers have been developed, the polymer backbone is mostly based on linear alkyl chains [e.g., poly(methacrylate)s, poly(ether)s]. Polymers featuring ring structures in the backbone are limited due to the restricted availability of suitable polymerization techniques [e.g., poly(norbornene)s by ROMP]. The cyclopolymerization of dienes with pendant redox‐active anthraquinone moieties by Pd catalysis represents a novel approach to synthesize redox‐active polymers featuring cyclic structures in the backbone. Electrochemical investigations, in particular cyclic voltammetry, of these new diene monomer, polymers and the corresponding polymer supported carbon paper composites were conducted in different organic electrolytes. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2184–2190  相似文献   

9.
Sulfonium sulfonate, or sulfothetin, zwitterionic monomers were synthesized by ring‐opening of 1,3‐propanesultone with dialkyl sulfides containing styrenic or methacrylic moieties. Reversible addition‐fragmentation chain‐transfer polymerization of these monomers was achieved in water or trifluoroethanol, and the resulting polymers exhibited higher upper critical solution temperatures than the analogous sulfobetaine polymers. Unlike typical polymer zwitterions, these polymeric sulfothetins possess an inherent reactivity that proved tunable based on their chemical structures. This reactivity makes them amenable to post‐polymerization modification by nucleophilic dealkylation to rapidly access novel substituted polymers and gels. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 83–92  相似文献   

10.
This contribution describes the polymerization of 2,2,6,6‐tetramethylpiperidin‐4‐yl methacrylate by atom transfer radical polymerization (ATRP). Different catalytic systems are compared. The CuCl/4,4′‐dinonyl‐2,2′‐dipyridyl catalytic system allows a good control over the polymerization and provides polymers with a polydispersity index below 1.2. The successful polymerization of styrene from PTMPM‐Cl macroinitiators by ATRP is then demonstrated. Successful quantitative oxidation of PTMPM‐b‐PS block copolymers leads to poly(2,2,6,6‐tetramethylpiperidinyloxy‐4‐yl‐methacrylate)‐b‐poly(styrene) (PTMA‐b‐PS). The cyclic voltammogram of PTMA‐b‐PS indicates a reversible redox reaction at 3.6 V (vs. Li+/Li). Such block copolymers open new opportunities for the formation of functional organic cathode materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

11.
The range of electrochemical stability of a series of weakly coordinating halogenated (Hal=F, Cl, Br, I) 1‐carba‐closo‐dodecaborate anions, [1‐R‐CB11X5Y6]? (R=H, Me; X=H, Hal, Me; Y=Hal), has been established by using quantum chemical calculations and electrochemical methods. The structures of the neutral and dianionic radicals, as well as the anions, have been optimized by using DFT calculations at the PBE0/def2‐TZVPP level. The calculated structures are in good agreement with existing experimental data and with previous calculations. Their gas‐phase ionization energies and electron affinities were calculated based on their optimized structures and were compared with experimental (cyclic and square‐wave) voltammetry data. Electrochemical oxidation was performed in MeCN at room temperature and in liquid sulfur dioxide at lower temperatures. All of the anions show a very high resistance to the onset of oxidation (2.15–2.85 V versus Fc0/+), with only a minor dependence of the oxidation potential on the different halogen substituents. In contrast, the reduction potentials in MeCN are strongly substituent dependent (?1.93 to ?3.32 V versus Fc0/+). The calculated ionization energies and electron affinities correlate well with the experimental redox potentials, which provide important verification of the thermodynamic validity of the mostly irreversible redox processes that are observed for this series. The large electrochemical windows that are afforded by these anions indicate their suitability for electrochemical applications, for example, as supporting electrolytes.  相似文献   

12.
We report the synthesis and ion‐binding properties of four poly(crown‐ethers) displaying either one or two crown‐ethers (15‐crown‐5 or 18‐crown‐6) on every third carbon alongside the backbone. The polymers were synthesized by living anionic ring‐opening polymerization of disubstituted cyclopropane‐1,1‐dicarboxylates monomers. Cation binding of the polychelating polymers and corresponding monomers to Na+ and K+ was evaluated by picrate extraction and isothermal calorimetry titration. This novel family of poly(crown‐ethers) demonstrated excellent initial binding of the alkali ions to the polymers, with a higher selectivity for potassium. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2337–2345  相似文献   

13.
Novel bi‐triphenylamine‐containing aromatic dibromide M3 , N,N‐bis(4‐bromophenyl)‐N′,N′‐dipheny‐l,4‐phenylenediamine, was successfully synthesized. The novel conjugated polymer P1 having number‐average molecular weight of 1.31 × 104 was prepared via Suzuki coupling from the dibromide M3 and 9,9‐dioctylfluorene‐2,7‐diboronic acid bis(1,3‐propanediol) ester. Polymer P1 had excellent thermal stability associated with a high glass‐transition temperature (Tg = 141 °C). The hole‐transporting and UV‐vis‐near‐infrared electrochromic properties were examined by electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the conjugated polymer films cast onto indium‐tin oxide‐coated glass substrates exhibited two reversible oxidation redox couples at E1/2 values of 0.73 and 1.13 V versus Ag/Ag+ in acetonitrile solution. The hole mobility of the conjugated polymer P1 revealed ~10?3 cm2 V?1 s?1, which is much higher than that of other conjugated polymer systems. The observed UV‐vis‐near‐infrared absorption change in the conjugated polymer film P1 at applied potentials ranging from 0.00 to 1.23 V are fully reversible and associated with strong color changes from pale yellowish in its neutral form to green and blue in its oxidized form. Using a combination of experimental study and theoretical investigation, we proposed an oxidation mechanism based on molecular orbital theory, which explains the cyclic voltammetry experimental results well. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
A stereoregular 2‐amino‐glycan composed of a mannosamine residue was prepared by ring‐opening polymerization of anhydro sugars. Two different monomers, 1,6‐anhydro‐2‐azido‐mannose derivative ( 3 ) and 1,6‐anhydro‐2‐(N, N‐dibenzylamino)‐mannose derivative ( 6 ), were synthesized and polymerized. Although 3 gave merely oligomers, 6 was promptly polymerized into high polymers of the number‐average molecular weight (Mn) of 2.3 × 104 to 2.9 × 104 with 1,6‐α stereoregularity. The differences of polymerizability of 3 and 6 from those of the corresponding glucose homologs were discussed. It was found that an N‐benzyl group is exceedingly suitable for protecting an amino group in the polymerization of anhydro sugars of a mannosamine type. The simultaneous removal of O‐ and N‐benzyl groups of the resulting polymers was achieved by using sodium in liquid ammonia to produce the first 2‐amino‐glycan, poly‐(1→6)‐α‐D ‐mannosamine, having high molecular weight through ring‐opening polymerization of anhydro sugars.© 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
Dimethylaluminum complexes bearing bidentate amidate, oxypyridine, and salicylaldimine N,O‐ligands and tridentate N,N,N″‐pyridyliminoamide ligands were synthesized and spectroscopically characterized. The complexes were investigated in both neutral and borane‐activated cationic forms, along with bidentate N,N′‐ligated aluminum amidinates, as catalysts for the polymerization of methyl methacrylate, ?‐caprolactone, and propylene oxide. The neutral complexes generally did not carry out polymerization, but the polymerization/oligomerization of all three monomers was achieved when the various catalysts were activated with B(C6F5)3 or [Ph3C]+[B(C6F5)4]?. The N,O‐ligated cations were much less active for polymerization than the analogous, more stable N,N′‐ligated amidinate cations; both types of cationic complexes catalyzed the ring‐opening cationic polymerization of tetrahydrofuran. B(C6F5)3 and [Ph3C]+[B(C6F5)4]? also independently carried out the oligomerization of propylene oxide. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1633–1651, 2002  相似文献   

16.
Novel renewable thermoplastic elastomers were synthesized by sequential polymerization of lysine‐ and itaconic acid‐derived monomers. Ring‐opening polymerization of lysine‐based O‐carboxyanhydride monomer using diethylene glycol as an initiator gave well‐defined α,ω‐dihydroxy functionalized lysine‐derived polyesters. The M n of these polyesters increased with the monomer conversion while retaining relatively narrow molecular weight distributions. Based on the successful controlled polymerization and esterification of α,ω‐dihydroxy with 2‐bromoisobutyryl bromide, the resultant Br‐PL‐Br macroinitiator was used for the atom transfer radical polymerization of N‐phenylitaconimide (PhII). Three poly(N‐phenylitaconimide)‐b‐polyester‐b‐poly(N‐phenylitaconimide) triblock copolymers were prepared containing 12 ? 25 mol% PPhII, as determined by 1H NMR spectroscopy. The properties of the obtained triblock copolymer are evaluated as high‐performance and renewable thermoplastic elastomer materials. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 349–355  相似文献   

17.
Novel chiral N‐propargylphosphonamidate monomers (HC?CCH2NHP(?O)R? O? menthyl, 1 : R = CH3, 2 : R = C2H5, 3 : R = n‐C3H7, 4 : R = Ph) were synthesized by the reaction of the corresponding phosphonic dichlorides with menthol and propargylamine. Pairs of diastereomeric monomers 1 – 4 with different ratios were obtained due to the chiral P‐center and menthyl group. One diastereomer could be separated from another one in the cases of monomers 1 and 2 . Polymerization of 1 – 4 with (nbd)Rh+6‐C6H5B?(C6H5)3] as a catalyst in CHCl3 gave the polymers with number‐average molecular weights ranging from 5000 to 12,000 in 65–85%. Poly( 1 )–poly( 4 ) exhibited quantitative cis contents, and much larger specific rotations than 1 – 4 did in CHCl3. The polymers showed an intense Cotton effect around 325 nm based on the conjugated polyacetylene backbone. It was indicated that the polymers took a helical structure with predominantly one‐handed screw sense, and intramolecular hydrogen bonding between P?O and N? H of the polymers contributed to the stability of the helical structure. Poly( 1a ) and poly( 2a ) decreased the CD intensity upon raising CH3OH content in CHCl3/CH3OH. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1515–1524, 2007  相似文献   

18.
Anionic polymerizations of three 1,3‐butadiene derivatives containing different N,N‐dialkyl amide functions, N,N‐diisopropylamide (DiPA), piperidineamide (PiA), and cis‐2,6‐dimethylpiperidineamide (DMPA) were performed under various conditions, and their polymerization behavior was compared with that of N,N‐diethylamide analogue (DEA), which was previously reported. When polymerization of DiPA was performed at ?78 °C with potassium counter ion, only trace amounts of oligomers were formed, whereas polymers with a narrow molecular weight distribution were obtained in moderate yield when DiPA was polymerized at 0 °C in the presence of LiCl. Decrease in molecular weight and broadening of molecular weight distribution were observed when polymerization was performed at a higher temperature of 20 °C, presumably because of the effect of ceiling temperature. In the case of DMPA, no polymer was formed at 0 °C and polymers with relatively broad molecular weight distributions (Mw/Mn = 1.2) were obtained at 20 °C. The polymerization rate of PiA was much faster than that of the other monomers, and poly(PiA) was obtained in high yield even at ?78 °C in 24 h. The microstructure of the resulting polymers were exclusively 1,4‐ for poly(DMPA), whereas 20–30% of the 1,2‐structure was contained in poly(DiPA) and poly(PiA). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3714–3721, 2010  相似文献   

19.
A series of triphenylamine‐based polymers containing electron‐donating methoxy (? OCH3) and electron‐withdrawing cyano or nitro (? CN or ? NO2) substituents in the main chains have been designed and investigated. These conjugated polymers ( P1 – P3 ) could be readily prepared by oxidative coupling polymerization from monomers ( M1 – M3 ) using FeCl3 as an oxidant. The P2 and P3 exhibited moderate high Tg values (203–205 °C) and thermal stability. These polymers in NMP solution showed UV–vis absorption around 288–404 nm and photoluminescence peaks around 435–492 nm. P1 – P3 showed reversible oxidation redox couples at Eonset = 0.67, 0.99, and 1.00 V in solution of 0.1 M tetrabutylammonium perchlorate (TBAP)/acetonitrile (CH3CN), respectively. M3 and P3 exhibited reversible reduction redox couples at Eonset = ?1.04 and ?1.03 V. These polymers also revealed electrochromic characteristic changing color at different potential. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 285–294, 2009  相似文献   

20.
The use of ethylene glycol solvents in the room‐temperature atom transfer radical polymerization (ATRP) of various hydrophobic and hydrophilic methacrylates is demonstrated. Unlike many of the very polar solvents described in the literature for room‐temperature ATRP, these solvents have good solvency for a wide range of polymers and monomers and are cheap and relatively nontoxic. Ethylene glycols with one hydroxyl and one methoxy group, such as tri(ethylene glycol) monomethyl ether (TEGMME), provide optimal results. The polymerization of methyl methacrylate in TEGMME with CuBr/N,N,NN′,N″‐pentamethyldiethylenetriamine as the catalyst requires the addition of CuCl2 at the beginning of the reaction to produce well‐controlled polymerizations. This leads to polymers with predictable molecular weights and relatively narrow polydispersities. Polymerization in solvents that are fully methoxy‐capped terminate prematurely because of catalyst precipitation. The electrochemical behavior of copper complexes in selected solvents is examined to determine why these solvents provide good rates at room temperature. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1588–1598, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号