首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A porphyrin derivative (fluorophore) appended with bipyridine (ionophore) has been applied for preparation of a Cu2+-sensitive optical chemical sensor, which is based on fluorescence quenching of porphyrin derivative entrapped in a poly(vinyl chloride) membrane by the energy transfer process. The sensor exhibits a linear response toward Cu2+ in the concentration range 2.0 x 10(-8) - 1.0 x 10(-5) M, with a working pH range from 6.0 to 8.0 and a high selectivity. The detection limit is 5 x 10(-9) M. The response time for Cu2+ is less than 5 min with concentrations lower than 5 x 10(-6) M. The optode can be regenerated using 0.3 M EDTA (pH 9) and acetate buffer solution. The effect of the composition of the sensor membrane was studied, and the experimental conditions were optimized. The sensor has been used for direct determination of Cu2+ in water samples with satisfied results.  相似文献   

2.
A novel high-selective potentiometric sensor for molybdate was prepared with a PVC membrane combining mu-oxo-bis[5,10,15,20-tetra(p-methylphenyl)porphinatomanganese(III)] [[Mn(p-Me)TPP](2)O] as an electroactive material and 2-nitrophenyl octyl ether (o-NPOE) as a plasticizer in the percentage ratio of 3:65:32, [Mn(p-Me)TPP](2)O:o-NPOE:PVC (w:w). The sensor exhibited a linear response with a Nernstian slope of 30.5 mV per decade within a concentration range of 2.1 x 10(-6) to 1.0 x 10(-1) M MoO4(2-), with a working pH range from 5.0 to 12.5, and a fast response time of less than 15 s. The electrode showed improved selectivity toward molybdate with respect to common coexisting anions compared to monometalloporphyrin counterparts. Several electroactive materials and solvent mediators were compared and the experimental conditions were optimized. The sensor is preliminary applied to the assay of MoO4(2-) in corrosion inhibitor samples with satisfactory results.  相似文献   

3.
Zhang XB  Guo CC  Xu JB  Shen GL  Yu RQ 《The Analyst》2000,125(5):867-870
Lanthanide porphyrin complexes synthesized by a solid state method were used to prepare a novel ethacrynic acid (EA) sensor. The sensor, based on pentane-2,4-dionato(meso-tetraphenylporphinato)terbium [TbTPP(acac)] with an optimized membrane composition, exhibits a Nernstian response to EA- ion in the concentration range 7.4 x 10(-6)-1.0 x 10(-1) mol l-1 with a pH range from 3.2 to 6.8 and a fast response time of 30 s. The electrode shows improved selectivity towards EA- ion with respect to common co-existing ions compared with the previously reported EA sensor. As electroactive materials, lanthanide porphyrin complexes show better potentiometric response characteristics than copper porphyrin complexes. The effect of solvent mediators and lipophilic ion additives was studied and the experimental conditions were optimized. The electrode was applied to the determination of EA in human urine samples with satisfactory results.  相似文献   

4.
Two novel potentiometric membrane sensors responsive to the ibuprofen drug have been developed. These incorporate poly(vinyl chloride) and polyurethane matrix membranes containing 5,10,15,20-tetraphenylporphrinato (TPP) indium(II) ionophore plasticized with dibutylsebacate. The sensors show a near-Nernstian response with anionic slopes of -53 and -55 mV decade(-1), over the concentration range of 4.2 x 10(-6)-1.0 x 10(-2) and 3.3 x 10(-6)-1.0 x 10(-2) M ibuprofen within pH ranges of 4-9 and 5-9 for PVC and PU matrix membranes, respectively. A sensor based on a polyurethane membrane displays a lower detection limit and a wider linear working range, and a sensor based on a PVC membrane exhibits a better overall selectivity, especially in the presence of lipophilic organic anions. Both sensors are used for the quantification and quality-control assessment of ibuprofen in pharmaceutical preparations. The average recoveries are 99.1+/-0.3% and 99.3+/-0.3% for TPP In(III)-PVC and TPP In(III)-PU based membrane sensors, respectively. High selectivities towards ibuprofen in the presence of many anions, drug excipients and diluents are offered by both sensors, which exhibit a non-Hofmeister selectivity pattern.  相似文献   

5.
The construction and general performance of thirteen new polymeric membrane sensors for the determination of fexofenadine hydrochloride based on its ion exchange with reineckate, tetraphenylborate and tetraiodomercurate have been studied. The effects of membrane composition, type of plasticizer, pH value of sample solution and concentration of the analyte in the sensor internal solution have been thoroughly investigated. The novel sensor based on reineckate exchanger shows a stable, potentiometric response for fexofenadine in the concentration range of 1 x 10(-2) - 2.5 x 10(-6) M at 25 degrees C that is independent of pH in the range of 2.0 - 4.5. The sensor possesses a Nernstian cationic slope of 62.3+/-0.7 mV/concentration decade and a lower detection limit of 1.3 x 10(-6) M with a fast response time of 20 - 40 s. Selectivity coefficients for a number of interfering ions and excipients relative to fexofenadine were investigated. There is negligible interference from almost all studied cations, anions, and pharmaceutical excipients, however, citrizine that has a structure homologous to that of fexofenadine was found to interfere. The determination of fexofenadine in aqueous solution shows an average recovery of 99.83% with a mean relative standard deviation (RSD) of 0.5%. Direct potentiometric determination of fexofenadine in tablets gave results that compare favorably with those obtained by standard spectrophotometric methods. Potentiometric titration of fexofenadine with phosphomolybdic acid as a titrant has been monitored with the proposed sensor as an end point indicator electrode.  相似文献   

6.
Yang RH  Wang KM  Long LP  Chan WH  Yang XH 《The Analyst》2002,127(1):119-124
A new fluorophore, N,N-dibenzyl-3,3',5,5'-tetramethylbenzidine (NBTMB), was prepared and shown to exhibit significant and analytical usefulness for optical sensing toward 2,4-dinitrophenol or 2,4,6-trinitrophenol (picric acid) when it was immobilized in a plasticized poly(vinyl chloride) (PVC) membrane. When the membrane was applied to aqueous nitrophenol solution, NBTMB was able to extract selectively nitrophenol into the membrane phase. Since the extraction equilibrium was accompanied by fluorescence quenching of NBTMB, the chemical recognition process could be directly translated into an optical signal. The sensor showed reversible response in the concentration range from 2.0 x 10(-7) to 6.0 x 10(-5) mol L(-1) for the detection of 2,4-dinitrophenol in NaOAc-HOAc buffer at pH 4.0. It also showed a fast response time (t95% < 1.5 min) when the sensor was applied to 2,4-dinitrophenol solution at concentration levels of 5.26 x 10(-6) and 2.10 x 10(-5) mol L(-1) alternatively. A working principle is proposed and the responses of this sensor to various kinds of nitrophenol were studied. The sensor was applied to the direct determination of 2,4-dinitrophenol in prepared water samples and the indirect assay of the drug cinchonine and the results obtained were satisfactory.  相似文献   

7.
以[MnT(p-CH3)PP]2O为活性物质、以o-NPOE为增塑剂PVC膜制成的新型高效电位型传感器来测定MoO42-离子浓度。该电极具有线性能斯特斜率为30.5的响应特征,其工作浓度范围为2.1×10-6~1.0×10-1mol/L,pH范围为5.0~12.5,响应时间不超过15 s,对常见干扰离子有较高的选择性,并被应用于实际样品中MoO42-含量的测定。  相似文献   

8.
Porphyrin-manganese(V)-oxo and porphyrin-manganese(IV)-oxo species were produced in organic solvents by laser flash photolysis (LFP) of the corresponding porphyrin-manganese(III) perchlorate and chlorate complexes, respectively, permitting direct kinetic studies. The porphyrin systems studied were 5,10,15,20-tetraphenylporphyrin (TPP), 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (TPFPP), and 5,10,15,20-tetrakis(4-methylpyridinium)porphyrin (TMPyP). The order of reactivity for (porphyrin)Mn(V)(O) derivatives in self-decay reactions in acetonitrile and in oxidations of substrates was (TPFPP) > (TMPyP) > (TPP). Representative rate constants for reaction of (TPFPP)Mn(V)(O) in acetonitrile are k = 6.1 x 10(5) M(-1) s(-1) for cis-stilbene and k = 1.4 x 10(5) M(-1) s(-1) for diphenylmethane, and the kinetic isotope effect in oxidation of ethylbenzene and ethylbenzene-d(10) is k(H)/k(D) = 2.3. Competitive oxidation reactions conducted under catalytic conditions display approximately the same relative rate constants as were found in the LFP studies of (porphyrin)Mn(V)(O) derivatives. The apparent rate constants for reactions of (porphyrin)Mn(IV)(O) species show inverted reactivity order with (TPFPP) < (TMPyP) < (TPP) in reactions with cis-stilbene, triphenylamine, and triphenylphosphine. The inverted reactivity results because (porphyrin)Mn(IV)(O) disproportionates to (porphyrin)Mn(III)X and (porphyrin)Mn(V)(O), which is the primary oxidant, and the equilibrium constants for disproportionation of (porphyrin)Mn(IV)(O) are in the order (TPFPP) < (TMPyP) < (TPP). The fast comproportionation reaction of (TPFPP)Mn(V)(O) with (TPFPP)Mn(III)Cl to give (TPFPP)Mn(IV)(O) (k = 5 x 10(8) M(-1) s(-1)) and disproportionation reaction of (TPP)Mn(IV)(O) to give (TPP)Mn(V)(O) and (TPP)Mn(III)X (k approximately 2.5 x 10(9) M(-1) s(-1)) were observed. The relative populations of (porphyrin)Mn(V)(O) and (porphyrin)Mn(IV)(O) were determined from the ratios of observed rate constants for self-decay reactions in acetonitrile and oxidation reactions of cis-stilbene by the two oxo derivatives, and apparent disproportionation equilibrium constants for the three systems in acetonitrile were estimated. A model for oxidations under catalytic conditions is presented.  相似文献   

9.
Yang ST  Bachas LG 《Talanta》1994,41(6):963-968
Fiber optic sensors for nitrite were prepared by first electrochemically depositing a film of cobalt(II) tetrakis(o-aminophenyl)porphyrin, [Co(o-NH(2))TPP], on the surface of indium(tin) oxide glass slides. Then, the slides with the immobilized porphyrin were positioned at the tip of an optical fiber bundle. The response of the sensors was based on a change in absorbance caused by the interaction between nitrite and the poly[Co(o-NH(2))TPP] film. The sensors had a detection limit of 6 x 10(-9)M nitrite. The selectivity of the sensors was determined under both separate solutions and fixed interference conditions. The sensor had a long lifetime and was reversible.  相似文献   

10.
We have developed a highly La(III)-selective PVC membrane electrode based on a hexaaza macrocycle, 8,16-dimethyl-6,14-diphenyl-2,3,4:10,11,12-dipyridine-1,3,5,9,11,13-hexaazacyclohexadeca-3,5,8,11,13,16-hexaene [Bzo2Me2Pyo2(16)-hexaeneN6] (I) as membrane carrier, dibutylbutyl phosphonate (DBBP) as solvent mediator and sodium tetraphenylborate (NaTPB) as lipophilic additive. The best performance was given by the membrane of macrocycle I having a composition 10:260:5:120 (I:DBBP:NaTPB:PVC). The electrode exhibits a Nernstian response to La(III) ion in the concentration range 1.0x10(-1)-7.94x10(-7) M with a slope of 19.8+/-0.2 mV/decade of concentration and a detection limit of 5.62x10(-7) M. The response time of the sensor is 12 s and it can be used over a period of 4 months with good reproducibility. The electrode works well over a pH range of 2.5-10.0 and in partially non-aqueous medium with up to 30% organic content. The sensor was also used as an indicator electrode in potentiometric titration of La(III) ions with EDTA and for determining La(III) concentration in real samples.  相似文献   

11.
Cadmium ion-selective electrode based on tetrathia-12-crown-4   总被引:1,自引:0,他引:1  
Shamsipur M  Mashhadizadeh MH 《Talanta》2001,53(5):1065-1071
A new polyvinylchloride membrane sensor for Cd(2+) ions based on tetrathia-12-crown-4 as an ionophore was prepared. The sensor exhibits a Nernstian response for cadmium ions over a wide concentration range (4.0 x 10(-7) to 1.0 x 10(-1) M) with a slope of 29+/-1 mV decade(-1). The limit of detection is 1.0 x 10(-7) M (0.01 ppm). It has a fast response time of <10 s and can be used for at least 6 weeks without any divergence in potential. The electrode can be used in the pH range from 2.5 to 8.5. The proposed sensor shows fairly good discriminating ability towards Cd(2+) ion in comparison with some alkali, alkaline earth, transition and heavy metal ions. It was successfully applied for the direct determination of Cd(2+) in solution and, as an indicator electrode, in potentiometric titration of cadmium ions.  相似文献   

12.
A strontium Schiff's base complex (SS) can be used as a suitable ionophore to prepare a sulfate-selective PVC-based membrane electrode. The use of oleic acid (OA) and hexadecyltrimethylammonium bromide (HTAB), as additives, and nitrobenzen (NB), dibutyl phthalate (DBP) and benzyl acetate (BA) as solvent mediators, were investigated. The best performance was observed with a membrane composition PVC: NB: SS: HTAB of 30%: 62%: 5%: 3% ratio. The resulting sensor works well over a wide concentration range (1.0 x 10(-2)-1.0 x 10(-6) M) with a Nernstian slope of -29.2 mV per decade of sulfate activity over a pH range 4.0-7.0. The limit of detection of the electrode is 5 x 10(-7) M. The proposed sensor shows excellent discriminating ability toward SO4(2-) ions with regard to many anions. It has a fast response time of about 15 s. The membrane electrode was used to the determination of zinc in zinc sulfate tablets. The sensor was also used as an indicator electrode in the potentiometric titration of SO4(2-) against barium ion.  相似文献   

13.
The performance of octahydroxycalix[4]arene derivative used as a neutral carrier for silver polymeric membrane electrode was studied. The sensor gave a good Nernstian response of 58 +/- 1 mV per decade for silver ion in the activity range 3.3 x 10(-6) to 3.3 x 10(-2) M Ag+. The limit of detection reached 2.1 x 10(-6) M Ag+ and exhibited high selectivity for silver ion against the alkali, alkaline earth and transition metal ions. The sensor can be used in wide pH range from 1.5 to 6.5. The response time of the sensor is less than 20 s. The potentiometric sensor was used as the indicator electrode in the titration of Ag+ ions by sodium chloride solution.  相似文献   

14.
A new PVC membrane electrode for Zn2+ ions based on tetra(2-aminophenyl) porphyrin (TAPP) as membrane carrier is prepared. The sensor exhibits a linear stable response over a wide concentration range (5.0×10−5 to 1.0×10−1 M) with a slope of 26.5 mV/decade and a limit of detection 3.0×10−5 M (1.96 ppm). It has a response time of about l0 s and can be used for at least 8 months without any divergence in potential. The propose membrane sensor revealed good selectivities for Zn2+ over a wide variety of other metal ions and can be used in pH range of 3.0–6.0. It was successfully applied to the direct determination of zinc in a pharmaceutical sample and also as an indicator electrode in potentiometric titration of Zn2+ ions.  相似文献   

15.
[5,10,15,20-Tetrakis(4-N,N-dimethylaminobenzene)porphyrinato]Mn(III) acetate (MnTDPAc) was applied as an ionophore for an iodide-selective PVC membrane electrode. The influences of the membrane composition, pH of the test solution and foreign ions on the electrode performance were investigated. The sensor exhibited not only excellent selectivity to iodide ion compared to Cl- and lipophilic anions such as ClO4- and salicylate, but also a Nernstian response with a slope of -59.4 +/- 1.2 mV per decade for iodide ions over a wide concentration range from 1.0 x 10(-2) to 7.5 x 10(-6) M at 25 degrees C. The potentiometric response was independent of the pH of the solution in the pH range of 2 - 8. The electrode could be used for at least 2 months without any considerable divergence in the potential. Good selectivity for iodide ion, a very short response time, simple preparation and relatively long-term stability were the silent characteristics of this electrode. It was successfully used as an indicator electrode in the potentiometric titration of iodide ions, and also in the determination of iodide from seawater samples and drug formulations.  相似文献   

16.
A cobalt(II) tetrakisphenylporphyrin (Co(II)TPP) film modified glassy carbon electrode (Co(II)TPP-GCE) was prepared by just coating Co(II)TPP solution on the surface of the electrode. It can be used for the simultaneous determination of ascorbic acid and uric acid. The anodic peaks of AA and UA can be separated well. Owing to the strongly hydrophobic property of porphyrin, the modified electrode has good stability and long life. The linear range for UA and AA were 2.0 x 10(-6)-1.0 x 10(-4) M and 9.0 x 10(-6)-2.0 x 10(-3) M with detection limits of 5.0 x 10(-7) and 5.0 x 10(-6) M, respectively. Furthermore, metalloporphyrins of other kinds were also used to construct modified electrodes. Their performances were inferior compared with that of the Co(II)TPP modified electrode.  相似文献   

17.
Sun XX  Aboul-Enein HY 《Talanta》2002,58(2):387-396
The internal solid contact sensor for the determination of doxycycline hydrochloride (DC) was developed based on a conducting polypyrrole (PPy) film immobilized on a glassy carbon electrode surface casted by a plasticized polyvinyl chloride (PVC) membrane containing an ion-pair compound of DC with tetraphenylborate (TPB) and dibutylphthalate (DBP) as plasticizer. Effects of various factors for the electropolymerization of pyrrole or aniline, including monomer concentration, acidity or inorganic salt and thickness of polymer film were investigated experimentally. It was found that the slope and the linear range of SCSs changed with both the different concentration of monomer and of KCl in electrolyte solution and with the different substrate material and a marked influence of the change of solution pH on the potential response of sensor occurred when sample solution pH>3.5. Under the condition of pH 2.8, the sensor showed a near-Nernstian response over the range of DC concentration of 1.0x10(-2)-1.0x10(-5) mol l(-1) with the slope (at 25 degrees C) of 54.4 mV per decade. The detection limit obtained was 4.0x10(-6) mol l(-1).The sensor was successfully applied to determination of DC in pharmaceutical formulation.  相似文献   

18.
A PVC membrane sensor for the selective determination of mebendazole (MBZ) was fabricated. The sensor is based on an ion association of MBZ with silicotungstic acid (STA) as ion pair and bis(2-ethylhexyl)phthalate (BEP) as the plasticizing agent in a PVC matrix. The sensor showed a linear response for MBZ for a concentration range 1.0x10(-6)-5.0x10(-2) M with a Nernstian slope of 55.8 mV/decade (limit of detection 6.3x10(-7) M) in the pH range 4-7. It has a fast response time of <30 s. The sensor showed a very good selectivity for MBZ with respect to a large number of ions. The direct determination of MBZ in pharmaceutical formulations gave results that compare well with the data obtained from the standard method.  相似文献   

19.
Ahmad M  Narayanaswamy R 《Talanta》1995,42(9):1337-1344
Chrome azurol S immobilised on XAD-2 has been used in this study as a reagent phase for the development of an optical fibre Al(III) sensor. Using a kinetic approach, this sensor was able to give a linear response in the Al(III) concentration range of 1.3 x 10(-5)-2.0 x 10(-4) M with a limit of detection of 1.0 x 10(-4) M. The optimum responses were obtained at pH 6.0 and when the solution was stirred. The sensor response was found to have a repeatability and reproducibility of 1.6% and 5.8%, respectively. The results obtained for Al(III) determination in aqueous sample were in good agreement with those obtained using graphite furnace-atomic absorption spectrometry.  相似文献   

20.
A highly La(III) ion-selective PVC membrane sensor based on N'-(1-pyridin-2-ylmethylene)-2-furohydrazide (NPYFH) as an excellent sensing material was successfully developed. The electrode shows a good selectivity for La(III) ion with respect to most common cations including alkali, alkaline earth, transition and heavy metal ions. The proposed sensor exhibits a wide linear response with slope of 19.2 +/- 0.6 mV per decade over the concentration range of 1.0 x 10(-6) - 1.0 x 10(-1) M, and a detection limit of 7.0 x 10(-7) M of La(III) ions. The sensor response is independent of pH in the range of 3.5-10.0. The proposed electrode was applied as an indicator electrode in potentiometric titration of La(III) ion with EDTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号