共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ping Liao Zheng-Yu Yan Zhi-Ji Xu Xiao Sun 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2009,72(5):1066-1070
Aqueous thiol-capped CdSe QDs with a narrow, symmetric emission were prepared under a low temperature. Based on the fluorescence enhancement of thiol-stabilized CdSe quantum dots (QDs) caused by edaravone, a simple, rapid and specific quantitative method was proposed to the edaravone determination. The concentration dependence of fluorescence intensity followed the binding of edaravone to surface of the thiol-capped CdSe QDs was effectively described by a modified Langmuir-type binding isotherm. Factors affecting the fluorescence detection for edaravone with thiol-stabilized CdSe QDs were studied, such as the effect of pH, reaction time, the concentration of CdSe QDs and so on. Under the optimal conditions, the calibration plot of C/(I − I0) with concentration of edaravone was linear in the range of (1.45–17.42) μg/mL (0.008–0.1 μmol/L) with correlation coefficient of 0.998. The limit of detection (LOD) (3σ/κ) was 0.15 μg/mL (0.0009 μmol/mL). Possible interaction mechanism was discussed. 相似文献
3.
Quantum dots (QDs) or semiconductor nanocrystals have been receiving great interest in the last few years. In this paper, L-cysteine-coated CdSe/CdS core-shell QDs (λem = 585 nm) have been prepared, which have excellent water-solubility. The full width at half maximum (FWHM) of the photoluminescence of these nanocrystals is very narrow (about 30 nm), and the quantum yield (QY) is 15% relative to Rhodamine 6G in ethanol (QY = 95%). With excess free L-cysteine in the solution, the fluorescence intensity of L-cysteine-coated CdSe/CdS QDs showed improved stability. It was found that the fluorescence of L-cysteine-capped CdSe/CdS QDs could be quenched only by copper (II) ions and was insensitive to other physiologically important cations, such as Ca2+, Mg2+, Zn2+, Al3+, Fe3+, Mn2+ and Ni2+ etc. Based on this finding, the quantitative analysis of Cu2+ with L-cysteine-capped CdSe/CdS QDs has been established. The linear range was from 1.0 × 10− 8 to 2.0 × 10− 7 mol L− 1 and the limit of detection (LOD) was 3.0 × 10− 9 mol L− 1 (S/N = 3). The proposed method has first been applied to the determination of Cu2+ in vegetable samples with recoveries of 99.6–105.8%. 相似文献
4.
Stephen K. Davidowski Carmen E. Lisowski Jeffery L. Yarger 《Magnetic resonance in chemistry : MRC》2016,54(3):234-238
The ligand capping of phosphonic acid functionalized CdSe/ZnS core–shell quantum dots (QDs) was investigated with a combination of solution and solid‐state 31P nuclear magnetic resonance (NMR) spectroscopy. Two phosphonic acid ligands were used in the synthesis of the QDs, tetradecylphosphonic acid and ethylphosphonic acid. Both alkyl phosphonic acids showed broad liquid and solid‐state 31P NMR resonances for the bound ligands, indicative of heterogeneous binding to the QD surface. In order to quantify the two ligand populations on the surface, ligand exchange facilitated by phenylphosphonic acid resulted in the displacement of the ethylphosphonic acid and tetradecylphosphonic acid and allowed for quantification of the free ligands using 31P liquid‐state NMR. After washing away the free ligand, two broad resonances were observed in the liquids' 31P NMR corresponding to the alkyl and aromatic phosphonic acids. The washed samples were analyzed via solid‐state 31P NMR, which confirmed the ligand populations on the surface following the ligand exchange process. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
5.
The spectroscopic properties of CdSe/ZnS quantum dots (QDs) were observed to change as a function of thioalkyl acid ligand. Experiments were performed using 2, 3, 6, and 11-carbon linear thioalkyl acids, as well as mercaptosuccinic acid (MSA) and dihydrolipoic acid (DHLA). Bathochromic shifts of up to 14 nm in the emission spectra of QDs capped with these ligands were observed. Similarly, hypsochromic or bathochromic shifts up to 7 nm were observed for a specific ligand in acidic or basic solution, respectively. These shifts could be correlated to the number of ionized ligands and the ability of the ligands to act as hole acceptors. It was also found that differences in quantum yield between the ligands were primarily due to variations in radiative decay rate and not nonradiative decay rate. This indicated that different degrees of QD surface passivation were not responsible for the differences, and that the radiative system must be considered as the sum of the ligands and the QD nanocrystal. The stability of QDs capped with mercaptoacetic acid, MSA, and DHLA towards aggregation at low pH was found to correlate with the pK(a) of the ligands. Spectral shifts were also observed during aggregation. Overall, the luminescence of thioalkyl acid capped QDs appears to be a complex function of dielectric constant, electrostatic or hole-acceptor interactions with ionized ligands, and, to a lesser extent, passivation. 相似文献
6.
采用胶体化学方法合成还原性谷胱甘肽(GSH)稳定的Cd Se纳米量子点,所合成的Cd Se量子点对痕量的六价铬具有灵敏的荧光猝灭作用。以Cd Se量子点为荧光探针,建立一种简单快速测定生活饮用水中痕量六价铬的检测方法。在0.05~2.0μg·L-1范围内,Cd Se量子点的荧光强度变化值与生活饮用水中六价铬的含量呈线性关系,方法的检出限为0.01μg·L-1,样品测定的相对标准偏差小于5%,加标回收率在97~104%之间。该方法能够快速灵敏检测生活饮用水中的痕量六价铬,具有重现性好,定量准确灵敏等优点。 相似文献
7.
In the present work, CdSe/ZnS core-shell quantum dots were synthesized and conjugated with enzymes, glucose oxidase (GOD) and horseradish peroxidase (HRP). The complex of enzyme-conjugated QDs was used as QD-FRET-based probes to sense glucose. The QDs were used as an electron donor, whereas GOD and HRP were used as acceptors for the oxidation/reduction reactions involved in oxidizing glucose to gluconic acid. Electron transfer between the redox enzymes and the electrochemical reduction of H2O2 (or O2) occurred rapidly, resulting in an increase of the turnover rate of the electron exchange between the substrates (e.g. glucose, H2O2 and O2) and the enzymes (GOD, HRP), as well as between the QDs and the enzymes. The transfer of non-radiative energy from the QDs to the enzymes resulted in the fluorescence quenching of the QDs, corresponding to the increase in the concentration of glucose. The linear detection ranges of glucose concentrations were 0–5.0 g/l (R = 0.992) for the volume ratios of 10/5/5, 0.2–5.0 g/l (R = 0.985) for the volume ratios of 10/5/3 and 1.0–5.0 g/l (R = 0.982) for the volume ratios of 10/5/0. Temperature (29–37 °C), pH (6–10) and some ions (NH4+, NO3−, Na+, Cl−) had no interference effect on the glucose measurement. 相似文献
8.
《中国化学快报》2021,32(8):2474-2478
Fabrication of well-designed heterojunctions is an extraordinarily attractive pathway for boosting the photocatalytic activity toward CO_2 photoreduction.Herein,a novel kind of na nosheet-based intercalation hybrid coupled with CdSe quantum dots(QDs) was successfully fabricated by a facile solvothermal method and served as photocatalyst for full-spectrum-light-driven CO_2 reduction.Ultra-small CdSe QDs were rationally in-situ introduced and coupled with lamellar ZnSe-intercalation hybrid nanosheet,resulting in the formation of CdSe Q.Ds/ZnSe hybrid heterojunction.Significantly,the concentration of Cd~(2+) could change directly the crystallinity and micromorphology of ZnSe intercalation hybrid,which in turn would impact on the photocatalysis activity.The optimized CdSe QDs/ZnSe hybrid-5 composite demonstrated a considerable CO yield rate of the 25.6 μmol g~(-1) h~(-1) without any additional cocatalysts or sacrificial agents assisting,making it one of the best reported performance toward CO_2 photoreduction under full-spectrum light.The elevated CO_2 photoreduction activity could be attributed to the special surface heterojunction,leading to improving the ability of light absorption and promoting the separation/transfer of photogenerated carriers.This present study developed a new strategy for designing inorganic-organic heterojunctions with enhanced photocatalyst for CO_2 photoreduction and provided an available way to simultaneously mitigate the greenhouse effect and alleviate energy shortage pressure. 相似文献
9.
Chitosan-coated CdSe quantum dots (CdSe/CS QDs) were successfully synthesized in aqueous system through a γ-radiation route at room temperature under ambient pressure. The diameter of the resulting QDs was about 4 nm with narrow size distribution. The synthesized QDs exhibited an absorption peak at 460 nm and an emission peak at 535 nm. These QDs were cubic zinc blende CdSe in core structure and coated with chitosan on surface, with fine solubility in water. 相似文献
10.
The aim of this paper was to demonstrate a fluorescence measurement method for rapid detection of two bacterial count by using water-soluble quantum dots (QDs) as a fluorescence marker, and spectrofluorometer acted as detection apparatus, while Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were as detection target bacteria. Highly luminescent water-soluble CdSe QDs were first prepared by using thioglycolic acid (TGA) as a ligand, and were then covalently coupled with target bacteria. The bacterial cell images were obtained using fluorescence microscopy. Our results showed that CdSe QDs prepared in water phase were highly luminescent, stable, and successfully conjugated with E. coli and S. aureus. The fluorescence method could detect 102-107 CFU/mL total count of E. coli and S. aureus in 1-2 h and the low detection limit is 102 CFU/mL. A linear relationship of the fluorescence peak intensity and log total count of E. coli and S. aureus have been established using the equation Y = 118.68X − 141.75 (r = 0.9907). 相似文献
11.
Guo-Xi Liang 《Talanta》2010,80(5):2172-1633
The near-infrared (NIR)-emitting CdSeTe alloyed quantum dots (AQdots) that capped with l-cysteine were applied for ultrasensitive Cu2+ sensing. The sensing approach was based on the fluorescence of the AQdots selectively quenched in the presence of Cu2+. Experimental results showed a low interference response towards other metal ions. The possible quenching mechanism was discussed on the basis of the binding between l-cysteine and the metal ions. In addition, biomolecules have low effect on the fluorescence due to the minimized interferences in NIR region. The response of the NIR optical sensor was linearly proportional to the concentration of Cu2+ ranging from 2 × 10−8 to 2 × 10−6 mol L−1. Furthermore, it has been successfully applied to the detection of Cu2+ in vegetable samples. 相似文献
12.
Ravi Kumar Shukla Yuriy Genadievich Galyametdinov Radik Rashitovich Shamilov 《Liquid crystals》2013,40(12):1889-1896
A systematic study highlighting the effect of cadmium selenide quantum dots (CdSe QDs) with varying concentrations of 0.05, 0.10 and 1.0 wt% doping on the electrooptical and dielectric parameters of ferroelectric liquid crystal (FLC) is presented. No considerable change is observed in phase transition temperature and tilt angle with CdSe QDs doping at lower and higher dopant level. Substantial enhancement of localised electric field at higher doping level (1.0 wt%) of CdSe QDs manifested the ≈48% reduction in the switching response of FLC nanocolloids at 30°C. Reduction in the spontaneous polarisation, dielectric constant and absorption strength could be attributed to the antiparallel correlation among dopant and matrix molecules, ion capturing in the capping additive layer and enhancement of the rotational viscosity of the nanocolloids, respectively. Goldstone mode relaxation frequency is found to be decreased with doping up to 0.10 wt% concentration and showed reverse effect at higher QDs concentration. QDs doping effect on the photoluminescence intensity is also discussed. 相似文献
13.
Xia Wang Weidong Fan Ming Zhang Yizhu Shang Yutong Wang Di Liu Hailing Guo Fangna Dai Daofeng Sun 《中国化学快报》2019,30(3):801-805
2-Fold interpenetrating 3D framework for selective adsorption of CO2 over CH4 and fluorescence detection of Fe3+ ions and nitroaromatic compounds through fluorescence quenching. 相似文献
14.
Takayuki Kouketsu Shuhong DuanTeruhiko Kai Shingo KazamaKoichi Yamada 《Journal of membrane science》2007
A poly(amidoamine) (PAMAM) dendrimer composite membrane with an excellent CO2/N2 separation factor was developed in-situ. The In-situ Modification (IM) method was used to modify the surface of commercial porous membranes, such as ultrafiltration membranes, to produce a gas selective layer by controlling the interface precipitation of the membrane materials in the state of a received membrane module. Using the IM method, a chitosan layer was prepared on the inner surface of a commercially available ultrafiltration membrane as a gutter layer, in order to affix PAMAM dendrimer molecules on the porous substrate. After chitosan treatment, the PAMAM dendrimer was impregnated into the gutter layer to form a PAMAM/chitosan hybrid layer. The CO2 separation performance of the resulting composite membrane was tested at a pressure difference of 100 kPa and a temperature of 40 °C, using a mixed CO2 (5 vol%)/N2 (95 vol%) feed gas. The PAMAM dendrimer composite membrane, with a gutter layer prepared from ethylene glycol diglycidyl ether and a 0.5 wt% chitosan solution of two different molecular weight chitosans, revealed an excellent CO2/N2 separation factor and a CO2 permeance of 400 and 1.6 × 10−7 m3 (STP) m−2 s−1 kPa−1, respectively. SEM observations revealed a defect-free chitosan layer (thickness 200 nm) positioned directly beneath the top surface of the UF membrane substrate. After PAMAM dendrimer treatment, the hybrid chitosan/PAMAM dendrimer layer was observed with a thickness of 300 nm. XPS analysis indicated that the hybrid layer contained about 20–40% PAMAM dendrimer. 相似文献
15.
A simple and sensitive assay system for glucose based on the glutathione (GSH)-capped CdTe quantum dots (QDs) was developed. GSH-capped CdTe QDs exhibit higher sensitivity to H2O2 produced from the glucose oxidase catalyzed oxidation of glucose, and are also more biocompatible than other thiols-capped QDs. Based on the quenching of H2O2 on GSH-capped QDs, glucose can be detected. The detection conditions containing reaction time, the concentration of glucose oxidase and the sizes of QDs were optimized and the detection limits for glucose was determined to be 0.1 μM; two detection ranges of glucose from 1.0 μM to 0.5 mM and from 1.0 mM to 20 mM, respectively were obtained. The detection limit was almost a 1000 times lower than other QDs-based optical glucose sensing systems. The developed glucose detection system was simple and facile with no need of complicated enzyme immobilization and modification of QDs. 相似文献
16.
Ayele DW Chen HM Su WN Pan CJ Chen LY Chou HL Cheng JH Hwang BJ Lee JF 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(20):5737-5744
A method that does not employ hot-injection techniques has been developed for the size-tunable synthesis of high-quality CdSe quantum dots (QDs) with zinc blende structure. In this environmentally benign synthetic route, which uses less toxic precursors, solvents, and capping ligands, CdSe QDs that absorb visible light are obtained. The size of the as-prepared CdSe QDs and thus their optical properties can be manipulated by changing the microwave reaction conditions. The QDs were characterized by XRD, TEM, UV/Vis, FTIR, time-resolved fluorescence spectroscopy, and fluorescence spectrophotometry. In this approach, the reaction is conducted in open air and at a much lower temperature than in hot-injection techniques. The use of microwaves in this process allows for a highly reproducible and effective synthesis protocol that is fully adaptable for mass production and can be easily employed to synthesize a variety of semiconductor QDs with the desired properties. Possible applications of the CdSe QDs were assessed by deposition on TiO(2) films. 相似文献
17.
18.
Marta Liras Elena Peinado Pedro Cañamero Isabel Quijada‐Garrido Olga García 《Journal of polymer science. Part A, Polymer chemistry》2014,52(21):3087-3095
Well‐defined thermoresponsive polymers obtained by the atom transfer radical polymerization (ATRP) of short oligo(ethylene glycol) methyl ether methacrylates (MEOnMA, n = 2, 3, or 8) with small ratios of a thiolated comonomer, 2‐(acetylthio)ethylmethacrytale, can replace the hydrophobic trioctylphosphine oxide (TOPO) capping of CdSe quantum dots (QDs). After this facile ligand exchange, the mild hydrolysis of the acetylthiol group into thiol is the key to enhance the QD luminescence. However, the length of the ethylene glycol side chain is critical for the success of the functionalization; it is established that the shortest MEO2MA‐based copolymers result in a compact coating and a highest quantum yield (up to a factor of 6) when compared with that of CdSe@TOPO in dichloromethane. In addition, the amphiphilic character of the copolymer allows the CdSe@P(MEOnMA‐co‐SEMA) nanohybrids to disperse in water. On the other hand, the residual ionizable thiol groups do not get attached to the QD surface, cause that the lower critical solubility temperature of the polymer depends on pH as well. Thus, at acidic pH, an abrupt increase in the luminescence emission accompanies the polymer collapse, which establishes the promise of these hybrids as temperature/pH nanosensors and targeted drug delivery. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3087–3095 相似文献
19.
A resonance light-scattering (RLS) detection method for saccharides was developed using dextran-coated CdSe quantum dots (dextran-CdSe-QDs) optical probes. The dextran-CdSe-QDs can be aggregated with concanavalin A (Con A), and the change in RLS intensity is used to monitor the extent of aggregation. The presence of glucose competitively binds with Con A, dissociating the Con A/dextran-CdSe-QDs complexes, affording the RLS intensity change and hence determining glucose concentrations in the range from a few to about 90 mM. Transmission electron microscopy was used to investigate the competitive interaction between glucose and dextran-CdSe-QDs with Con A. The competitive strategy could also be used to detect similar types of saccharides and the affinities of various monosaccharides for Con A increased in the order galactose?glucose < fructose < mannose. The proposed method was successfully applied to determine glucose in the human serum. A resonance light-scattering (RLS) detection method for saccharides was developed using dextran-coated CdSe quantum dots (dextran-CdSe-QDs) optical probes. The dextran-CdSe-QDs were coupled to concanavalin A (Con A) to facilitate the aggregation of nanoparticles. The presence of glucose competitively binds with Con A, dissociating the Con A/dextran-CdSe-QDs complexes affording the RLS intensity change and hence determining glucose in the range from a few millimolar to about 90 mM. The proposed method was applied to the determination of glucose in human serum samples with satisfactory results. 相似文献