首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The use of the solid-phase extraction technique for the rapid sample preparation of organochlorine pesticides is described. Samples were simultaneously extracted, cleaned, and fractionated by the solid-phase extraction method and a further separation and determination of extracted fractions was carried out by gas chromatography with either an electron capture or a Hall electrolytic conductivity detector. The percent recovery of the extracted seven pesticides was compared to that of the conventional liquid-liquid extraction method. The analytical figures of merit., chromatograms, and statistic data are reported. The application of this method was demonstrated by a real fish sample determination with mass spectra for confirmation of Kepone detection.  相似文献   

2.
Ultrasonic solvent extraction of organochlorine pesticides from soil   总被引:1,自引:0,他引:1  
Ultrasonic solvent extraction of the organochlorine pesticides (OCP) including α-, β-, γ- and Δ-hexachlorocyclohexane (HCH), heptachlor, aldrin, o,p′-DDE, dieldrin, p,p′-DDE, p,p′-DDT, methoxychlor, mirex from soil is reported. The extraction procedure was optimized with regard to the solvent type, amount of solvent, duration of sonication and number of extraction steps. Determination of pesticides was carried out by gas chromatography (GC) equipped with electron capture detection (ECD). Twice ultrasonic extraction using 25 mL of a mixture of petroleum ether and acetone (1/1 v/v) for 20 min of sonication showed satisfactory extraction efficiency. Recoveries of pesticides from fortified soil samples are over 88% for three different fortification levels between 15 and 200 μg kg−1, and relative standard deviations of the recoveries are generally below 6%. Real soil samples were analyzed for OCP residues by optimized ultrasonic solvent extraction and shake-flask as well as soxhlet extraction technique. Investigated all extraction methods showed comparable extraction efficiencies. Optimized ultrasonic solvent extraction is the most rapid procedure because the use of time in ultrasonic extraction was considerably reduced compared to shake-flask and soxhlet extraction.  相似文献   

3.
A method to determine 21 organochlorine pesticides (OCPs) in tree leaves [chestnut (Castanea sativa), hazel (Corylus avellana), oak (Quercus robur) and walnut tree (Juglans regia)] based on microwave-assisted extraction (MAE) followed by solid-phase extraction (SPE) clean-up is described. After extraction with hexane:acetone (50:50), four different sorbents (Florisil, tandem Florisil + alumina, silica and ENVI-Carb) were assayed for the clean-up step. Pesticides were eluted with 5 mL of hexane:ethyl acetate (80:20) and determined by gas chromatography and electron capture detection (GC-ECD). Carbon was the sorbent, which provided colourless eluates and chromatograms with less interferent compounds. Analytical recoveries obtained were ca. 100% for all the studied pesticides with this sorbent.  相似文献   

4.
The ASPEC (Automatic Sample Preparation with Extraction Columns) system has been coupled on-line to capillary GC-ECD by means of a loop-type interface equipped with a solvent vapour exit. Both ASPEC and GC conditions have been optimized leading to an effective clean-up of the extracts analyzed. By means of solid-phase extraction cartridges filled with silica, it has been possible to analyze concentrated surface water extracts for a group of 18 electron-capturing compounds present in the water at ppt levels. ASPEC-GC has also been applied to the determination of synthetic pyrethroids at ppt levels in surface water. The complete analytical procedure is greatly facilitated by automation and miniaturization. Miniaturization results in a considerable decrease in the sample volume required. The potential of the method for the analysis of other pesticides is estimated.  相似文献   

5.
A method to determine organochlorine pesticides in horticultural samples (lettuce, tomato, spinach, potato, turnip leaf and green bean) using pressurized liquid extraction (PLE) is described and compared with microwave assisted extraction (MAE). Significant parameters affecting PLE procedure such as temperature, static extraction time and extraction solvent were optimised and discussed. Clean-up of extracts was performed by solid phase extraction (SPE) using a carbon cartridge as adsorbent. Pesticides were determined by gas chromatography and electron capture detection (GC-ECD). Analytical recoveries obtained were ca. 100% and the relative standard deviations were lower than 15% for most of the studied pesticides with the proposed methods in each analysed matrix.  相似文献   

6.
A rapid technique based on dynamic microwave-assisted extraction coupled with on-line solid-phase extraction of high-performance liquid chromatography (DMAE-SPE-HPLC) has been developed. A TM010 microwave resonance cavity built in the laboratory was applied to concentrate the microwave energy. The sample placed in the zone of microwave irradiation was extracted with 95% acetonitrile (ACN) aqueous solution which was driven by a peristaltic pump at a flow rate of 1.0 mL min−1. The extraction can be completed in a recirculating system in 10 min. When a number of extraction cycles were completed, the extract (1 mL) was diluted on-line with water. Then the extract was loaded into an SPE column where the analytes were retained while the unretained matrix components were washed away. Subsequently, the analytes were automatically transferred from the SPE column to the analytical column and determined by UV detector at 238 nm. The technique was used for determination of organochlorine pesticides (OCPs) in grains, including wheat, rice, corn and bean. The limits of detection of OCPs are in the range of 19-37 ng g−1. The recoveries obtained by analyzing the four spiked grain samples are in the range of 86-105%, whereas the relative standard deviation (R.S.D.) values are <8.7% ranging from 1.2 to 8.7%. Our method was demonstrated to be fast, accurate, and precise. In addition, only small quantities of solvent and sample were required.  相似文献   

7.
建立了一种USE-SPME-GC联用测定蔬菜中有机氯和菊酯类农药残留量的新方法,并对分析条件进行优化和探讨,实验表明,萃取液中基体杂质和色素对分析结果干扰较大,我们提出稀释的方法较好的解决这个问题。对实际蔬菜样品进行了测定和分析。  相似文献   

8.
建立了枇杷花中有机氯类农药残留量的固相萃取-毛细管气相色谱(SPE-CGC)分析方法。对采自福建蒲田等12地的枇杷花中六六六(4种异构体)、滴滴涕(4种异构体)、五氯硝基苯共9种有机氯农药的残留量进行了测定。样品采用丙酮超声波提取,浓缩后过Florisil固相萃取小柱净化,洗脱剂为V(正己烷)∶V(丙酮)100∶1。用DB-1701弹性石英毛细管气相色谱柱分离样品,微电子捕获检测器进行检测。9种有机氯农药的峰面积与其质量浓度均有良好的线性关系,相关系数均大于0.999,最低检测限为0.016~0.125μg/L,样品的加标回收率为85.4%~106.9%,相对标准偏差为1.8%~9.8%。该方法能够满足农药残留检测的要求。  相似文献   

9.
微波辅助萃取法测定烟草中有机氯类农药残留量   总被引:5,自引:0,他引:5  
建立了一种微波辅助萃取-固相萃取净化测定烟草中17种有机氯类农药残留量的新方法. 样品用V(正己烷):V(乙酸乙酯)=1:1提取, 提取液经Florisil固相萃取柱净化后, 采用气相色谱-电子捕获检测器(GC-μECD)进行检测. 17种有机氯农药的0.01、 0.05 mg/kg和0.5 mg/kg加标回收率均在82%以上, RSD在0.11%~8.2%之间, 能满足当前烟草中有机氯农药残留的检测要求.  相似文献   

10.
A method was developed for the simultaneous analysis of pyrethroid, organophosphate, and organochlorine pesticides in fish tissue. Different extraction solvents and solid-phase extraction clean-up procedures were tested. The best approach was to extract by sonication with acetonitrile and 10%?methanol, followed by clean-up of extracts using C18, Florisil and Na2SO4 tandem solid-phase extraction cartridges. Gas chromatography with an electron-capture detector was used for analyte determination. All 26 target pesticides were detected using the new method in a single analytical run. The method detection limits ranged from 0.13 to 1.40?µg/kg, while recoveries of the analytes ranged from 86.1 to 133.8%?with relative standard deviations?≤12.1%?at a spiked concentration of 5?µg/kg. The method was developed to assess possible pesticide contamination in fish collected from lakes at a proposed Illinois National Guard Armory site.  相似文献   

11.
Solid-phase microextraction (SPME) and solid-phase extraction (SPE) procedures were coupling with microwave-assisted micellar extraction for organochlorine pesticides residues determination in seaweed samples. They were optimized, compared and discussed.Preliminary experiments were performed in order to study experimental conditions for the extraction of pesticides from spiked seaweed samples with microwave-assisted micellar extraction (MAME) using a non-ionic surfactant (Polyoxyethylene 10 Lauryl Ether). After that, SPME and SPE were used to clean-up and preconcentrate MAME extract prior the analysis by liquid chromatography with photodiode array (PDA) detection.Excellent results were obtained for both procedures. Average pesticide recoveries between 80.5 and 104.3% for MAME-SPME and between 73.9 and 111.5% for MAME-SPE were obtained. Relative standard deviations (RSDs) were lower than 10.3% and 5.3% respectively for all recoveries tested, and LOD between 138–348 ng g− 1 for MAME-SPME and 2–38 ng g− 1 for MAME-SPE were obtained. The method was validated using Soxhlet extraction procedure.Both methods were applied to analyse target organochlorine pesticides in several seaweed samples and results were compared. These results show the great possibilities of combining MAME-SPE-HPLC-UV for the analysis of seaweed samples, improving the selectivity and sensitivity in the determination of organochlorine pesticides analysis for this kind of samples.  相似文献   

12.
建立了中草药及其土壤中多种有机氯农药残留量的固相萃取-毛细管气相色谱(SPE-CGC)分析方法,并对7种中草药及其土壤中多种有机氯农药残留量的相关性进行了初步研究。样品以正己烷-丙酮用超声波提取,Florisil(1 g)固相萃取小柱快速净化提取物。采用SPB-5弹性石英毛细管柱分离样品,GC-ECD检测7种中草药及其土壤中的13种有机氯农药的残留量。方法的线性范围为1.26×10-10~2.24×10-7g/mL;检出限为6.4×10-11~6.1×10-10g/mL;加样平均回收率为87.3%~104.4%(RSD为1.1%~7.0%)。  相似文献   

13.
A solid-phase microextraction technique using steel fiber coated with 20 μm polypyrrole (Ppy) doped with polyphosphate was developed for the GC determination of a group of organochlorine pesticides (OCPs) in water. The coating was prepared using a three-electrode electrochemical system from a 10% aqueous sodium polyphosphate solution containing 0.05 M pyrrole by applying a constant potential of 1.2 V for 30 min. In order to obtain an adherent, smooth and stable film of polypyrrole, experimental parameters related to the coating process consisting of the type of dopant or counter-ion, deposition potential, concentration of the monomer, concentration of the counter-ion, and deposition time were optimized. The effects of various parameters on the efficiency of SPME process such as extraction time, extraction temperature, ionic strength, desorption time, and desorption temperature were also studied. The coating was highly stable and extremely adherent to the surface of the steel fiber. The method was linear for at least three orders of magnitude with correlation coefficients varying from 0.9818 to 0.9977. The accuracies found through spiking blank samples showed high recoveries between 82 and 110%. Intra- and inter-day precisions of the method were determined from mixed aqueous solutions containing 1.0 ng ml−1 of each OCP. The intra-day precisions varied from 4.7% for heptachlor to 11.4% for methoxychlor, while the inter-day precisions varied from 6.8% for endosulfan I to 13.0% for p,p′-DDD and o,p-DDD. Limits of detection based on S/N = 3 were in the range 0.015-0.66 pg ml−1. The proposed method was applied to monitor organochlorine pesticides in some well water samples.  相似文献   

14.
A direct immersion solid-phase microextraction coupled with gas chromatography-electron capture detection (SPME-GC-ECD) method was optimized and validated for the quantitative determination of 18 organochlorine pesticides in ground water. Ionic strength, stirring speed, adsorption and desorption time and pH were some of the parameters investigated in order to select the optimum conditions for SPME with a 50/30 DVB/CAR/PDMS fiber coating. The SPME-GC/ECD method showed good linear response below 10 ng L−1 with R2 values in the range of 0.9950–0.9997. The repeatability of the measurements were lower than 10%. Values of relative recoveries located within the acceptable range (80–120%). Limits of quantification (LOQ) from 4.5 × 10−3 to 1.5 ng L−1 were obtained. On average 8 organochlorines were found per sample, even so all the 18 organochlorines were quantified among them. Substances such as endrin ketone, γ-BHC and β-BHC were the pesticides determined in larger concentration (0.06–305 ng L−1), while methoxychlor and aldrin in smaller amounts (0.151–1.55 ng L−1). Measured levels of organochlorine pesticides were above the limits established by Brazilian regulations.  相似文献   

15.
Abstract

A sequential injection analysis method for the simultaneous spectrophotometric determination of phosphate and silicate has been developed. The method is based on the different reaction rates of the heteropolymolybdate formation reactions. Concentrations within the range 0.026—0.485 mmol P l?1 and 0.125—2.848 mmol Si l?1 have been determined at a frequency of 30 samples per hour. An R.S.D. of 2.1% was obtained for 0.162 mmol P l?1 and of 1.1% for 1.424 mmol Si l?1. The method was found to be suitable for the determination of phosphate and silicate in wastewater.  相似文献   

16.
In this work, a C18 composite solid-phase microextraction (SPME) fiber was prepared with a new method and applied to the analysis of organochlorine pesticides (OCPs) in water sample. A stainless steel wire (o.d. 127 μm) was used as the substrate, and a mixture of the C18 particle (3.5 μm) and the 184 silicone was used as the coating material. During the process of fiber preparation, a section of capillary column was used to fix the mixture onto the stainless steel wire and to ensure the constant of coating thickness. The prepared fiber showed excellent thermal stability and solvent resistance. By coupling with gas chromatography–mass spectrometry (GC–MS), the fiber exhibited wide linearity (2–500 ng L−1) and good sensitivity for the determination of six OCPs in water samples, the OCPs tested included hexachlorobezene, trans-chlordane, cis-chlordane, o,p-DDT, p,p-DDT and mirex. Not only the extraction performance of the newly prepared fiber was more than seven times higher than those of commercial fibers, the limits of detections (LODs) (0.059–0.151 ng L−1) for OCPs achieved under optimized conditions were also lower than those of reported SPME methods. The fiber was successfully applied to the determination of OCPs in real water samples by using developed SPME–GC–MS method.  相似文献   

17.
A rapid and reliable method was developed and applied for the simultaneous determination of 17 organochlorine pesticides (OCPs) in propolis. After extraction with hexane and acetone (1:1, v/v), four sorbents (florisil, silica, graphitized carbon, and tandem graphitized carbon plus florisil) were assayed for the clean-up step. The elution solvents hexane and ethyl acetate (1:1, v/v), hexane and dichloromethane (3:7, v/v), and ethyl acetate and hexane (2:8, v/v) were studied. The results showed that the combination of the tandem graphitized carbon and florisil cartridge with the elution solvent of 6mL of ethyl acetate and hexane (2:8, v/v), which was capable of eliminating matrix interference and providing colorless eluates, was the most efficient clean-up procedure for propolis extracts when testing for OCPs. The analytical technique employed was gas chromatography with electron capture detection (GC–ECD). The correlation coefficients from linear regression for the analyzed concentrations (5∼100 μg/kg) were >0.9961. The limits of detection (LODs) varied between 0.8 μg/kg for 4,4′-DDE and 11.4 μg/kg for endosulfan II, and the limits of quantitation (LOQs) ranged from 2.6 to 38.1 μg/kg. The average recoveries varied between 62.6 and 109.6%. Relative standard deviations (RSD%) ranged from 0.8 to 9.4%. Sample analysis indicated that 4,4′-DDE was detected more often in propolis than other pesticides, such as β-HCH, δ-HCH and heptachlor. Figure GC-ECD chromatogram of a standard solution with 0.1 mg/L of OCPs  相似文献   

18.
Summary Gas chromatography of polychlorinated biphenyls and chlorinated pesticides in water samples has been performed after adsorption from a 50–250 mL sample on to a cartridge containing 100 mg cyanopropyl-bonded porous silica. The PCBs are desorbed with 500 μL ethyl acetate, which is concentrated and analysed by gas chromatography with electron-capture detection (GC-ECD). The average recovery of 1 ppb PCB congeners at from distilled water and from Marta river water is ≥95% (standard deviation ≤2.5). The average recovery of 20 ppb Aroclor 1260 from Marta river water was ≥91% (standard deviation ≤3.5). In the separation of the PCBs from the chlorinated pesticides only aldrin, heptachlor and 4,4′-DDD are adsorbed with the PCBs by the CN Sep-Pak cartridge. The method proposed is rapid, simple and reproducible.  相似文献   

19.
Wang W  Meng B  Lu X  Liu Y  Tao S 《Analytica chimica acta》2007,602(2):211-222
The methods of simultaneous extraction of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) from soils using Soxhlet extraction, microwave-assisted extraction (MAE) and accelerated solvent extraction (ASE) were established, and the extraction efficiencies using the three methods were systemically compared from procedural blank, limits of detection and quantification, method recovery and reproducibility, method chromatogram and other factors. In addition, soils with different total organic carbon contents were used to test the extraction efficiencies of the three methods. The results showed that the values obtained in this study were comparable with the values reported by other studies. In some respects such as method recovery and reproducibility, there were no significant differences among the three methods for the extraction of PAHs and OCPs. In some respects such as procedural blank and limits of detection and quantification, there were significant differences among the three methods. Overall, ASE had the best extraction efficiency compared to MAE and Soxhlet extraction, and the extraction efficiencies of MAE and Soxhlet extraction were comparable to each other depending on the property such as TOC content of the studied soil. Considering other factors such as solvent consumption and extraction time, ASE and MAE are preferable to Soxhlet extraction.  相似文献   

20.
Summary A new dual injector solvent focussing and elution technique developed for high-performance liquid chromatography (HPLC) greatly improves chromatographic efficiency for the on-line analysis of C18 solid-phase extraction (SPE) cartridges. Solutions containing three benzene homologs were used to characterize the dual injector analysis technique and to compare the chromatographic efficiency of this method with conventional SPE analysis methods. Sampling was performed off-line using a glass precolumn cartridge (3 mm i.d. × 30 mm) packed with 15–35 μm C18 silica. On-line cartridge analysis was achieved with two injection valves in either serial or parallel configuration. The injection loop of the first valve contains the eluting solvent, and the cartridge holder is connected in place of the injection loop of the second valve. When an injection is made, both valves are turned to the inject position, and the solvent plug is forced through the cartridge, focussing the analyte at the solvent front as it elutes the cartridge. Solvent focussing at the head of the column, resulting from preconditioning of the column with a small plug of water during injection, further minimizes the variance of the injection plug and improves the chromatographic efficiency. The technique has potential applications to environmental and biological fluid analysis where analyte preconcentration and resolution from the sample matrix components may be difficult with current SPE methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号