首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nickel and potassium co-modified -Mo2C catalysts were prepared and used for CO hydrogenation reaction. The major products over -Mo2C were C1–C4 hydrocarbons, only few alcohols were obtained. Addition of potassium resulted in remarkable selectivity shift from hydrocarbons to alcohols at the expense of CO conversion over -Mo2C. Moreover, it was found that potassium enhanced the ability of chain propagation with a higher C2+OH production. Modified by nickel, -Mo2C showed a relatively high CO conversion, however, the products were similar to those of pure -Mo2C. When co-modified by nickel and potassium, -Mo2C exhibited high activity and selectivity towards mixed alcohols synthesis, and also the whole chain propagation to produce alcohols especially for the stage of C1OH to C2OH was remarkably enhanced. It was concluded that the Ni and K had, to some extent, synergistic effect on CO conversion.  相似文献   

2.
Magnetic Fe3O4 nanoparticles as a heterogeneous catalyst, were found to be efficient for the synthesis of a series of pyranopyrazoles by a four component reaction of a mixture of hydrazine hydrate, ethyl acetoacetate, aldehydes/ketones and malononitrile in water at room temperature. The products were attributed to the nanosize of about 16 nm in which the catalyst could act as a nanoreactor. The present protocol offers the advantages of clean reaction, short reaction time, high yield, easy purification and economic availability of the catalyst.  相似文献   

3.
Abstract

A simple, efficient and eco-friendly protocol has been described for the synthesis of α-aminophosphonates via Kabachnik-Fields reaction, catalyzed by H6P2W18O62·14H2O as a reusable catalyst. The reaction was realized by condensation of amino acids, various aromatic aldehydes and triethylphosphite under solvent-free conditions, the corresponding α-aminophosphonates were formed in good yields. All the new products were characterized by IR, 1H, 13C and 31P-NMR analyses. This method offers advantages such as simplicity workup with the green aspects, good yields and short reaction times.  相似文献   

4.
This review reports progress in the study of the surface structure of MgF2 and its use as a support of catalytically active phases. Magnesium fluoride was applied first as a support in catalysis for systems containing individual oxides of transition metals (Mo, V, W, Cu, Cr) and then two different oxide phases (Cu-Cr, Cu-Mn), a metal phase (Ru, Pd) or heteropolyacids. Its use as a support enabled determination of the structure and surface properties of these catalysts. The MgF2-supported catalysts are characterized by high activity and selectivity in such processes as: hydrodechlorination of chlorofluorocarbons (CFCs), hydrodesulfurization of organic compounds and purification of fuel combustion products from nitrogen oxides. Magnesium fluoride has been also used in MgF2-doped chromium or aluminum fluoride catalysts for Cl/F exchange on hydrochlorocarbons.  相似文献   

5.
A variety of hydroxy functional groups was protected as their corresponding trimethylsilyl ethers using HMDS in the presence of lanthanum trichloride. The catalyst LaCl3 activates the HMDS and accelerates the reaction under mild reaction conditions at room temperature to afford the corresponding silylated products in excellent yields.  相似文献   

6.
Ammonia synthesis by means of plasma over MgO catalyst   总被引:1,自引:0,他引:1  
Ammonia synthesis from H2-N2 mixed gas was studied at room temperature in a glow-discharge plasma in the presence of metals or metal oxides. Magnesia (MgO) and calcia (CaO), which are oxides with solid basicity, revealed catalytic activity in the plasma synthesis of ammonia, although they are catalytically inactive in industrial ammonia synthesis. The acidic oxides (Al2O3, WO3, and SiO2-Al2O3) lead to the consumption of the reactant, i.e., the H2-N2 mixed gas. No ammonia was isolated. Metal catalysts showed higher activity than the above basic oxides. They have, however, different activities. The reaction was faster over the active materials than over sodium chloride (NaCl) or glass wool or in a blank reactor without any catalyst.  相似文献   

7.
A novel and simple method for the synthesis of monodispersed microporous SiO2 microspheres with high specific surface area was developed by hydrolysis of tetraethoxysilane (TEOS) in a water-ethanol mixed solution and using dodecylamine (DDA) as hydrolysis catalyst and template. The as-prepared products were characterized with differential thermal analysis-thermogravimetry, scanning electron microscopy, high-resolution transmission electron microscopy, small angle X-ray diffraction and nitrogen adsorption. The effects of experimental conditions including hydrolysis temperatures, calcination temperature and concentrations of TEOS and DDA on the morphology and pore parameters of the as-prepared SiO2 microspheres were investigated and discussed. The results showed that hydrolysis temperature and concentrations of TEOS and DDA are important parameters for the control of size and morphology of particles. The specific surface area and specific pore volume of the as-prepared SiO2 microspheres increased with increasing DDA concentration and calcination temperature. DDA may act not only as a good hydrolysis catalyst but also as a template for the formation of monodispersed SiO2 microspheres with high specific surface area. This research may provide new insight into the synthesis of monodispersed microporous SiO2 microspheres.  相似文献   

8.
'Decoking' of a 'coked' zeolite catalyst in a glow discharge in oxygen is investigated. The 'decoking' process involves reactions of atomic oxygen (O atoms) with 'coke' and yields gases such as CO, CO2 as well as other gaseous products that could be easily pumped out.Three different modes of discharge were investigated including a static mode, a flowing-gas mode, and a periodic-purge mode where the oxygen and other gaseous products of the discharge were replaced by fresh O2 gas after short but regular intervals of time. In some cases, additional heating was also used to provide base temperatures of the order of 100 °C to facilitate penetration of oxygen atoms into the inner layers and cages of the zeolite catalyst.This paper presents some results of spectroscopic analytical techniques used to monitor the atomization of oxygen, oxidation of 'coke', and to confirm the process of 'decoking'. More specifically, radiation emission on the 3 s 5S– 3p 5P transitions of O around 777.2–777.5 nm were selected for monitoring the atomization of O2. On the other hand, X-ray photo-electron spectroscopy (XPS) was used to determine the amount of residual carbon and extent of 'decoking'. Furthermore, evolution of CO and CO2 gases as a function of time was systematically monitored in real time. For CO, the 451.1 nm band head belonging to the B1 - A1 bands of the Angstrom system of the CO spectrum was used, while for CO2, the band head at 353.4 nm belonging to the CO2+ spectrum was used. The rates of evolution of CO and CO2 were related to the rate of 'decoking' of the catalyst. It is noted that in the periodic-purge mode, about 63% of the total yield of CO from a given sample of the catalyst appears in the first 3-min exposure to discharge whereas it takes up to 15 min to remove nearly 94% of the removable carbon under our experimental conditions.  相似文献   

9.
CoTPP(Cl)/DMAP was found to be a highly active catalyst system for the chemical fixation of CO2 via reaction with epoxides. The corresponding cyclic carbonate products are produced in high yield and selectivity for a variety of terminal mono and disubstituted epoxides. 1,2-Disubstituted internal epoxides were also investigated as substrates and found to react with very high stereospecificity.  相似文献   

10.
在固定床高压微反装置上考察了预硫化型NiMoS/γ-Al2O3催化剂上二苯并噻吩(DBT)加氢脱硫(HDS)反应和吲哚加氢脱氮(HDN)反应之间的相互影响。结果表明,吲哚对DBT的加氢脱硫反应具有抑制作用,其中对加氢路径(HYD)比对氢解路径(DDS)的抑制作用强,温度升高后,吲哚的抑制作用减弱。吲哚对DBT加氢脱硫反应的抑制作用源于吲哚及其HDN反应的中间产物在活性位上的竞争吸附。DBT和原位生成的H2S促进了催化剂表面硫阴离子空穴(CUS)向B酸位的转化,从而提高1,2-二氢吲哚(HIN)分子中C(sp3)—N键的断裂能力,使得吲哚的转化率和产物中邻乙基苯胺(OEA)的相对含量增大。HDN活性相的形成虽然需要硫原子的参与,但是活性相的保持并不需要大量的硫原子,较高含量硫化物存在时加氢活性位减少,不利于脱氮反应。  相似文献   

11.
The NO catalytic direct decomposition was studied over La2CuO4 nanofibers, which were synthesized by using single walled carbon nanotubes (CNTs) as templates under hydrothermal condition. The composition and BET specific surface area of the La2CuO4 nanofiber were La2Cu0.882+Cu0.12+O3.94 and 105.0 m2/g, respectively. 100% NO conversion (turnover frequency-(TOF): 0.17 gNO/gcatalyst s) was obtained over such nanofiber catalyst at temperatures above 300 °C with the products being only N2 and O2. In 60 h on stream testing, either at 300 °C or at 800 °C, the nanofiber catalyst still showed high NO conversion efficiency (at 300 °C, 98%, TOF: 0.17 gNO/gcatalyst s; at 800 °C, 96%, TOF: 0.16 gNO/gcatalyst s). The O2 and NO temperature programmed desorption (TPD) results indicated that the desorption of oxygen over the nanofibers occurred at 80-190 and 720-900 °C; while NO desorption happened at temperatures of 210-330 °C. NO and O2 did not competitively adsorb on the nanofiber catalyst. For outstanding the advantage of the nanostate catalyst, the usual La2CuO4 bulk powder was also prepared and studied for comparison.  相似文献   

12.
Hydrosilylation of olefins catalyzed by Cp2TiCl2/Sm (Cp?=?cyclopentadienyl) under solvent free conditions have been investigated. By using Cp2TiCl2/Sm as catalyst system, β-adducts and hydrogenation products were detected. Hydrosilylation of olefins catalyzed by Cp2TiCl2/LiAlH4 under room temperature has also been studied. The influence of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) on Cp2TiCl2/Sm and Cp2TiCl2/LiAlH4, respectively, indicated that hydrosilylation of olefins catalyzed with Cp2TiCl2/Sm went through a free radical reaction pathway while a coordination mechanism was applied for Cp2TiCl2/LiAlH4 catalyst system.  相似文献   

13.
Abstract

Tunisian industrial phosphoric acid H3PO4 was supported on silica gel SiO2 (SIPA) to catalyze the hydrolysis reaction of aqueous alkaline sodium borohydride (NaBH4). The SiO2 was produced from purified quartz sand using alkali fusion-acidification chemical process. The BET surface area results indicate that the prepared silica gel could reach a specific surface area up to 585 m2/g. The addition of PO3H2 functional groups resulted in an increase of surface acidity of SiO2 catalyst as shown by FT-IR and DTA-DTG spectra. The total acidity of SIPA catalyst was determined by titration to be 2.8?mmol H+/g. SEM/EDS maps reveal the distribution of heavy metals on the silica surface. The effect of supported PO3H2 functional groups and heavy metals on the NaBH4 hydrolysis reaction was studied for different ratios of SIPA catalyst to NaBH4. The sample 12SIPA/NaBH4 leads to a very high hydrogen generation rate (up to 90%). The activation energy of hydrogen generation by NaBH4 hydrolysis was 25.7?kJ mol?1.  相似文献   

14.
CuO/Ce0.7Sn0.3O2 catalysts were prepared for the catalytic oxidation of CO. The catalysts were characterized by means of CO-TPD, XRD and TPR. A synergistic interaction between CuO and Ce0.7Sn0.3O2 is responsible for the high activity of carbon monoxide at low temperature.This revised version was published online in December 2005 with corrections to the Cover Date.  相似文献   

15.
A 5 wt% Pd/SiO2 catalyst was synthesized by heating PdCl2-impregnated SiO2 in H2 at 300°C for 2 h. It was found that the metal particle dispersion is improved when the reduction step is preceded by calcination at 300°C for 2h. Thermogravimetry of the impregnated support in air, N2 and H2 atmospheres was used to monitor the interactions occurring during the various preparative steps (i.e. drying, calcination and reduction) of the catalyst. The solid prduct of each preparative step was characterized by X-ray diffractometry and UV/Vis diffuse reflectance spectroscopy. The results indicate that following the drying step (at 110°C in air) the palladium occurs in two detectable forms: PdCl2 particles and Si?O?Pdn+ surface species. The calcination appears to transform the PdCl2 particles into the latter surface species. The H2-reduction eventually converts the surface species into finely-dispersed Pd° metal particles (average size=8–14 nm). No other reduction products, such as PdySix, were detected.  相似文献   

16.
A facile, efficient and chemoselective protocol for O-tert-butoxycarbonylation of various hydroxy compounds has been developed using NaLaTiO4 (layered perovskite) as a novel catalyst. The catalyst showed remarkable activity and reusability affording high yields of the desired products under mild reaction conditions.  相似文献   

17.
Titania-lanthanum phosphate nanocomposites with multifunctional properties have been synthesized by aqueous sol-gel method. The precursor sols with varying TiO2:LaPO4 ratios were applied as thin coating on glass substrates in order to be transparent, hydrophobic, photocatalytically active coatings. The phase compositions of the composite powders were identified by powder X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). The anatase phase of TiO2 in TiO2-LaPO4 composite precursors was found to be stable even on annealing at 800 °C. The glass substrates, coated with TL1 (TiO2-LaPO4 composition with 1 mol% LaPO4) and TL50 (composite precursor containing TiO2 and LaPO4 with molar ratio 1:1) sols and annealed at 400 °C, produced contact angles of 74° and 92°, respectively, though it is only 62° for pure TiO2 coating. The glass substrates, coated with TL50 sol, produced surfaces with relatively high roughness and uneven morphology. The TL1 material, annealed at 800 °C, has shown the highest UV photoactivity with an apparent rate constant, kapp=24×10−3 min−1, which is over five times higher than that observed with standard Hombikat UV 100 (kapp=4×10−3 min−1). The photoactivity combined with a moderate contact angle (85.3°) shows that this material has a promise as an efficient self-cleaning precursor.  相似文献   

18.
α-Bromination of carbonyl compounds (cyclic and acyclic ketones, amides and β-ketoesters) has been achieved efficiently by treatment with N-bromosuccinimide (NBS) and catalyzed by silica-supported sodium hydrogen sulfate (NaHSO4·SiO2). The products were formed in high yields under mild reaction conditions and in short reaction times.  相似文献   

19.
A novel Brønsted acidic ionic liquid namely N,N-diethyl-N-sulfoethanamminium hydrogen sulfate ([Et3N-SO3H]HSO4) was synthesized, and characterized using FT-IR, 1H NMR, 13C NMR, and mass data. Then, its catalytic activity was examined for the preparation of triazolo[1,2-a]-indazole-triones and 2H-indazolo[2,1-b]phthalazine-triones by the one-pot multi-component condensation of arylaldehydes with dimedone and 4-phenylurazole/2,3-dihydrophthalazine-1,4-dione under solvent-free conditions. [Et3N-SO3H]HSO4 efficiently promoted the reaction to afford the products in high yields and in short reaction times.  相似文献   

20.
The La2CuO4 crystal nanofibers were prepared by using single-walled carbon nanotubes as templates under mild hydrothermal conditions. The steam reforming of methanol (SRM) to CO2 and H2 over such nanofiber catalysts was studied. At the low temperature of 150 °C and steam/methanol=1.3, methanol was completely (100%, 13.8 g/h g catalyst) converted to hydrogen and CO2 without the generation of CO. Within the 60 h catalyst lifespan test, methanol conversion was maintained at 98.6% (13.6 g/h g catalyst) and with 100% CO2 selectivity. In the meantime, for distinguishing the advantage of nanoscale catalyst, the La2CuO4 bulk powder was prepared and tested for the SRM reaction for comparison. Compared with the La2CuO4 nanofiber, the bulk powder La2CuO4 showed worse catalytic activity for the SRM reaction. The 100% conversion of methanol was achieved at the temperature of 400 °C, with the products being H2 and CO2 together with CO. The catalytic activity in terms of methanol conversion dropped to 88.7% (12.2 g/h g catalyst) in 60 h. The reduction temperature for nanofiber La2CuO4 was much lower than that for the La2CuO4 bulk powder. The nanofibers were of higher specific surface area (105.0 m2/g), metal copper area and copper dispersion. The in situ FTIR and EPR experiments were employed to study the catalysts and catalytic process. In the nanofiber catalyst, there were oxygen vacancies. H2-reduction resulted in the generation of trapped electrons [e] on the vacancy sites. Over the nanofiber catalyst, the intermediate H2CO/HCO was stable and was reformed to CO2 and H2 by steam rather than being decomposed directly to CO and H2. Over the bulk counterpart, apart from the direct decomposition of H2CO/HCO to CO and H2, the intermediate H2COO might go through two decomposition ways: H2COO=CO+H2O and H2COO=CO2+H2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号