首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Equation-of-motion coupled cluster singles and doubles (EOM-CCSD) calculations have been performed to evaluate three-bond (15)N-(31)P coupling constants ((3h)J(N[bond]P)) across N[bond]H....O[bond]P hydrogen bonds in model cationic and anionic complexes including NH(4)(+):OPH, NH(4)(+):OPH(3), NH(3):(-)O(2)PH(2), NFH(2):(-)O(2)PH(2), and NF(2)H:(-)O(2)PH(2). Three-bond coupling constants can be appreciable when the phosphorus is P(V), but are negligible with P(III). (3h)J(N[bond]P) values in complexes with cyclic or open structures are less than 1 Hz, a consequence of the nonlinear arrangement of N, H, O, and P atoms. For complexes with these structures, (3h)J(N[bond]P) may not be experimentally measurable. In contrast, complexes in which the N, H, O, and P atoms are collinear or nearly collinear have larger values of (3h)J(N[bond]P), even though the N[bond]P distances are longer than N[bond]P distances in cyclic and open structures. In linear complexes, (3h)J(N[bond]P) is dominated by the Fermi-contact term, which is distance dependent. Therefore, N[bond]P (and hydrogen-bonding N[bond]O) distances in these complexes can be determined from experimentally measured (15)N-(31)P coupling constants.  相似文献   

2.
A constant-time TOCSY difference experiment for the determination of (3)J((1)H3'-(31)P) coupling constants in non-isotope-labelled DNA oligonucleotides is presented. The method is tested on a DNA octamer and compared with the established constant-time NOESY difference method. Each (3)J((1)H3'-(31)P) coupling constant is determined from amplitude changes caused by phosphorous decoupling, which are observable on multiple cross-peaks, thus leading to a high accuracy of the value of the (3)J((1)H3'-(31)P) coupling constant. The new experiment delivers up to three times the sensitivity compared with previously reported methods.  相似文献   

3.
One-bond heteronuclear spin-spin coupling constants (1)J(PX) (X=H, O, S, Se, C and N) between the phosphorus atom and axial and equatorial substituents in dioxaphosphorinanes are computed using density functional theory (DFT). The experimental values of these coupling constants for a variety of substituents can be applied to identify different diastereoisomers. The DFT calculations confirm the systematic trend observed in experiment, and indicate that the computed (1)J(PX) coupling constants are related to the length of the axial and equatorial bonds. A similar relation between the phosphorus chemical shift and the R(PX) bond length appears to be valid, with the exception of selenium substituents.  相似文献   

4.
In the course of the basic hydrolysis of four eremophilane esters isolated from Robinsonecio gerberifolius, some rearrangements, eliminations, and additions occurred. Five compounds were obtained, three of them not previously described. Additionally, a new sesquiterpene was produced by autooxidation of compound 1. The (1)H and (13)C NMR spectra of these compounds were completely assigned by utilization of HMQC, HMBC, COSY, DEPT, and NOESY techniques. The long-range coupling constants of the peroxide 10 are reported, and all its coupling constants (2)J(H, H), (3)J(H, H), and (4)J(H, H) are calculated at the B3LYP/6-31G(d,p) level of theory. Their magnitude is explained in terms of electronic delocalization and the additivity of stereoelectronic effects.  相似文献   

5.
Herein, we report on (31)P(31)P solution-phase "through-space" nuclear spin-spin coupling constants (J(PP)) from a novel family of organometallic tetraphosphine nickel and palladium complexes. These J(PP) constants were accurately determined through NMR iterative simulation based on the second-order spectra obtained for the compounds. The corresponding solid-state X-ray structures of the complexes were determined, and the "through-space" P.P distances are reported. Due to the blocked conformation of the species in solution, a qualitative and semiquantitative experimental correlation is obtained, which links the geometric parameters and the intensity of the corresponding P.P coupling constant. The lone-pair overlap theory developed for (19)F(19)F and (15)N(19)F "through-space" couplings in organic compounds [J. Am. Chem. Soc. 1973, 95, 7747-7752; 2000, 122, 4108-4116] appears to be a reliable foundation on which to account for our results. Based on the reported observations, the lone-pair overlap model is extended to "through-space" (31)P(31)P coupling, and the model is broadened to encompass metal orbital contributions for coordination complexes. Some of the predictions and consequences of the proposed theory are discussed.  相似文献   

6.
High-resolution solid-state 31P cross-polarization magic angle spinning (CP/MAS) spectra of a series of Pd(II) complexes were obtained. All of these spectra exhibit low-intensity satellite peaks flanking the main resonances which are assigned to originate from a combination of direct (D) and indirect (J) spin-spin coupling between the 31P and the 105Pd spins. The parameter 1J(105Pd,31P) is found to be sensitive to the nature of the ligand in a trans position and thus of great value in assigning the configuration, i.e. cis or trans, in square-planar complexes of Pd(II). A linear relationship between 1J(105Pd,31P) and 1J(195Pt,31P) in analogous Pd(II) and Pt(II) complexes is suggested, the latter parameter being a factor of ca 14 larger. Two-dimensional exchange spectroscopy proved valuable in resolving overlapping resonances and relating pairs of inequivalent 31P spins within the same complex and spreading their satellite manifolds into two dimensions. These two spectral features are unrelated, being due to dipolar coupling among the phosphorus spins in the former and finite lifetimes of the spin states of the 105Pd isotope in the latter case.  相似文献   

7.
A series of aminodiphenylphosphanes 1 [Ph2P‐N(H)tBu ( a ), ‐NEt2 ( b ), ‐NiPr2 ( c )], 2 [Ph2P‐NHPh ( a ), ‐NH‐2‐pyridine ( b ), ‐NH‐3‐pyridine ( c ), ‐NH‐4‐pyridine ( d ), NH‐pyrimidine ( e ), NH‐2,6‐Me2‐C6H3 ( f ), NH‐3‐Me‐2‐pyridine ( g )], 3 [Ph2P‐N(Me)Ph ( a ), ‐NPh2 ( b )], and N‐pyrrolyldiphenylphosphane 4 (Ph2P‐NC4H4) was prepared and studied by NMR (1H, 13C, 31P, 15N NMR) spectroscopy. The isotope‐induced chemical shifts 1Δ14/15N(31P) were determined at natural abundance of 15N by using HEED INEPT experiments. A dependence of 1Δ14/15N(31P) on the substituents at nitrogen was found (alkyl < H < aryl; increasingly negative values). The magnitude and sign of the coupling constants 1J(31P,15N) (positive sign) are dominated by the presence of the lone pair of electrons at the phosphorus atom. The X‐ray structural analysis of 2b is reported, showing the presence of dimers owing to intermolecular hydrogen bridges in the solid state. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:542–550, 2001  相似文献   

8.
1H and 13C NMR spectra of symmetrically substituted cyclotriphosphazenes exhibit second‐order effects. The influence of the 31P,31P coupling constants between ring phosphorus atoms on these effects was studied. Some values of this coupling constant between phosphorus bearing identical substituents were measured using 13C satellites of the 31P signals or by introduction of a chiral substituent on the third phosphorus atom. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Ab initio EOM-CCSD calculations have been performed on molecules HmX-YHn, for X, Y = 15N, 17O, 31P, and 33S, to investigate the variation of one-bond X-Y spin-spin coupling constants 1J(X-Y) and the components of J with rotation about the X-Y single bond. The reduced Fermi-contact (FC) terms for all 10 molecules are negative and decrease in absolute value as the rotational angle theta changes from 0 degrees, at which point the lone pairs of electrons are on the same side of the X-Y bond, to 180 degrees where they are trans with respect to the X-Y bond. The signs of reduced paramagnetic spin-orbit (PSO) and spin-dipole (SD) terms are opposite that of the FC term and exhibit extremum values as theta approaches 90 degrees, the gauche conformation. While the FC term tends to dominate for molecules H2X-YH2 and H2X-YH, such is not the case for HX-YH, where the PSO and SD terms assume increased importance. Curves for 1K(X-Y) as a function of rotational angle are readily grouped according to formula H2X-YH2, H2X-YH, and HX-YH, which suggests that it is the lone pairs of electrons on X and Y which are primarily responsible for the trends observed.  相似文献   

10.
Wu G  Wasylishen RE 《Inorganic chemistry》1996,35(11):3113-3116
The first observations of (31)P-(31)P indirect spin-spin (J) coupling in copper(I) phosphine complexes are reported for solid Cu(PPh(3))(2)X (X = NO(3)(-), BH(4)(-)). Values of (2)J((31)P,(31)P), 157 +/- 5 and 140 +/- 5 Hz for Cu(PPh(3))(2)NO(3) and Cu(PPh(3))(2)BH(4), respectively, have been obtained from two-dimensional (2D) J-resolved (31)P NMR spectra obtained under slow magic-angle spinning (MAS) conditions. In both complexes, the two phosphine ligands are crystallographically equivalent; thus, the two (31)P nuclei have identical isotropic chemical shifts. Under rapid sample spinning conditions, the (31)P MAS NMR spectra exhibit relatively sharp overlapping asymmetric quartets arising from (1)J((63/65)Cu,(31)P) and residual (63/65)Cu-(31)P dipolar interactions. No evidence of (2)J((31)P,(31)P) is apparent from the spectra obtained with rapid MAS; however, under slow MAS conditions there is evidence of homonuclear J-recoupling. Peak broadening due to heteronuclear dipolar interactions precludes measurement of (2)J((31)P,(31)P) from standard 1D (31)P MAS NMR spectra. It is shown that this source of broadening can be effectively eliminated by employing the 2D J-resolved experiment. For the two copper(I) phosphine complexes investigated in this study, the peak widths in the f(1) dimension of the 2D J-resolved (31)P MAS NMR spectra are about three times narrower than those found in the corresponding 1D (31)P MAS NMR spectra.  相似文献   

11.
A novel methodology using the order matrix calculation to determine the absolute sign of spin-spin couplings based on the structure of organic compounds is presented. The sign of the residual dipolar coupling (RDC) depends on the sign of corresponding scalar spin-spin coupling constant and the sign of the RDC has a dramatic influence on the order matrix calculation. Therefore, the sign of the spin-spin coupling constant can be obtained by an order matrix calculation through the corresponding RDC. Six types of spin-spin coupling constants, including 2J(H,H), 1J(C,F), 2J(C,F), 3J(C,F), 2J(F,H) and 3J(F,H), were obtained simultaneously. Except for 3J(C,F) where the measured RDCs have very small magnitudes, the signs were determined unambiguously.  相似文献   

12.
3J(C,H) coupling constants via a sulfur atom in two series of compounds, both including a sulfide, a sulfoxide and a sulfone, were detected experimentally and calculated by quantum mechanical methods. In the first series (1-3) the coupling between a hydrogen, bonded to an sp3 carbon, and an sp2 carbon is treated; the second series (4-6) deals with the coupling between a hydrogen, bonded to an sp3 carbon, and an sp3 carbon. Different pulse sequences (broadband HMBC, SelJres, 1D HSQMBC, J-HMBC-2, selective J-resolved long-range experiment and IMPEACH-MBC) proved to be useful in determining the long-range 3J(C,H) coupling constants. However, the dynamic behaviour of two of the compounds (4 and 6) led to weighted averages of the two coupling constants expected (concerning equatorial and axial positions of the corresponding hydrogens). DFT calculations proved to be useful to calculate not only the 3J(C,H) coupling constants but also the different contributions of FC, PSO, DSO and SD terms; the calculation of the Fermi contact term (FC) was found to be sufficient for the correct estimation of 3J(C,H) coupling constants.  相似文献   

13.
In a previous paper (Hermosilla, L.; Calle, P.; Garcia de la Vega, J. M.; Sieiro, C. J. Phys. Chem. A 2005, 109, 1114), an adequate computational protocol for the calculation of isotropic hyperfine coupling constants (hfcc's) was proposed. The main conclusion concerns the reliability of the scheme B3LYP/TZVP//B3LYP/6-31G* in the predictions of hfcc's with low computational cost. In the present study, we gain insight into the behavior of the above functional/basis set scheme on nuclei of the third row, for which few systematic studies have been carried out up to the present date. The systems studied are neutral, cationic, anionic, localized, and conjugated radicals, containing (29)Si, (31)P, and (33)S nuclei. After carrying out a regression analysis, we conclude that density functional theory (DFT) predictions on the hfcc's of the third-row nuclei are reliable for B3LYP/TZVP by using an optimized geometry with B3LYP/6-31G* combination. By comparison with other much more computationally demanding schemes, namely, B3LYP/cc-pVTZ and B3LYP/cc-pVQZ, we conclude that the B3LYP functional in conjunction with the TZVP basis set is the most useful computational protocol for the assignment of experimental hfcc's, not only for nuclei of first and second rows, but also for those of the third row.  相似文献   

14.
Several scalar coupling constants (mainly 31P, 31P) were calculated for 10 cyclotriphosphazenes and compared with experimental results when available. Although the experimental values cannot be reproduced, the calculated values are proportional to the experimental values. Some difficult cases, such as 19F, 19F couplings, are discussed.  相似文献   

15.
Calculated indirect NMR spin-spin coupling constants (3)J(P,C) and (2)J(P,H) were correlated with the local structure of the P-O...H-C linkage between the nucleic acid (NA) backbone phosphate and the H-C group(s) of a nucleic acid base. The calculations were carried out for selected nucleotides from the large ribosomal subunit (Ban et al. Science 2000, 289, 905) with the aim of identifying NMR parameters suitable for detection of certain noncanonical RNA structures. As calculations in the model system, dimethyl-phosphate-guanine, suggest, the calculated indirect spin-spin couplings across the linkage are sensitive to the mutual orientation and distance between the phosphate and nucleic acid base. A short distance between the nucleic acid base and phosphate group and the angles C...P-O and P...C-H smaller than 50 degrees are prerequisites for a measurable spin-spin interaction of either coupling (|J| > 1 Hz). A less favorable arrangement of the P-O...H-C motif, e.g., in nucleotides of the canonical A-RNA, results in an effective dumping of both spin-spin interactions and insignificant values of the NMR coupling constants. The present work indicates that quantum chemical calculations of the indirect spin-spin couplings across the P-O...H-C motif can help detect some rare but important backbone topologies, as seen for example in the reverse kink-turn. Measuring of (3)J(P,C) and (2)J(P,H) couplings can therefore provide critical constraints on the NA base and phosphate geometry and help to determine the structure of NAs.  相似文献   

16.
The higher order high-resolution (31)P and (19)F NMR spectra of hexafluorocyclotriphosphazene (F(2)PN)(3) were measured at 183 K and interpreted using subspectral analysis and iterative fitting computation. (F(2)PN)(3) forms a rigid nine-spin system [A[X](2)](3) with D(3h) symmetry. Two complete and very similar sets of six experimental spin-spin coupling constants, (1)J(P,F), (2)J(P,P), (2)J(F,F), (3)J(P,F), (4)J(F,F)(cis) and (4)J(F,F)(trans), were determined for the first time. Theoretical DFT calculations of chemical shifts and coupling constants were performed to assess their predictive value. The PP/aug-cc-pVDZ treatment rendered the best agreement with experimental data.  相似文献   

17.
An ab initio study has been carried out to determine the structures, relative stabilities, and spin-spin coupling constants of a set of 15 fluoro-substituted 1,3-diborata-2,4-diphosphoniocyclobutanes B(2)P(2)F(n)H(8-n), for n = 0, 1, 2, 4, with four-member B-P-B-P rings. Except for B(2)P(2)F(4)H(4) with four fluorines bonded to two borons, these rings are puckered in a butterfly conformation. For a fixed number of fluorines, the isomers with B-F bonds are significantly more stable than those with P-F bonds. As the number of fluorines increases, the energy difference between the most stable isomer and the other isomers increases. Transition structures which interconvert axial and equatorial positions present relatively small inversion barriers. Coupling constants involving (31)P, namely, (1)J(B-P), (1)J(P-F), (2)J(P-P), (2)J(P-F), and (3)J(P-F) are large and are capable of providing structural information. They are sensitive to the number of fluorines present and can discriminate between axial, equatorial, and geminal B-F and P-F bonds, although not all do this to the same extent. (1)J(B-P) and (2)J(P-P) are similar in equilibrium and transition structures. Although transition structures no longer discriminate between axial and equatorial bonds, (1)J(P-F) and (3)J(P-F) remain sensitive to the number of fluorine atoms present.  相似文献   

18.
Based on combined DFT/broken symmetry approach, a theoretical analysis of the exchange interactions in the VO(HPO(4)).0.5H(2)O solid is performed. Depending on the crystallographic structures reported in the literature, two very different spin models are formulated. In addition, a complete fit of the temperature-dependent (31)P NMR chemical shift is performed to determine exchange and hyperfine constants. The magnetic models used in the fit are those obtained by our theoretical calculations. The comparison between the calculated and fitted exchange constants confirms the adequacy of an isolated dimer model and rules out the alternating antiferromagnetic chain model for VO(HPO(4)).0.5H(2)O.  相似文献   

19.
Some new phosphoramidates were synthesized and characterized by 1H, 13C, 31P NMR, IR spectroscopy and elemental analysis. The structures of CF3C(O)N(H)P(O)[N(CH3)(CH2C6H5)]2 ( 1 ) and 4‐NO2‐C6H4N(H)P(O)[4‐CH3‐NC5H9]2 ( 6 ) were confirmed by X‐ray single crystal determination. Compound 1 forms a centrosymmetric dimer and compound 6 forms a polymeric zigzag chain, both via ‐N‐H…O=P‐ intermolecular hydrogen bonds. Also, weak C‐H…F and C‐H…O hydrogen bonds were observed in compounds 1 and 6 , respectively. 13C NMR spectra were used for study of 2J(P,C) and 3J(P,C) coupling constants that were showed in the molecules containing N(C2H5)2 and N(C2H5)(CH2C6H5) moieties, 2J(P,C)>3J(P,C). A contrast result was obtained for the compounds involving a five‐membered ring aliphatic amine group, NC4H8. 2J(P,C) for N(C2H5)2 moiety and in NC4H8 are nearly the same, but 3J(P, C) values are larger than those in molecules with a pyrrolidinyl ring. This comparison was done for compounds with six and seven‐membered ring amine groups. In compounds with formula XP(O)[N(CH2R)(CH2C6H5)]2, 2J(P,CH2)benzylic>2J(P,CH2)aliphatic, in an agreement with our previous study.  相似文献   

20.
The 31P? 31P and 13C? 31P coupling constants in 1,6-diphosphatriptycene have been obtained from analysis of its proton decoupled 13C n.m.r. spectra. More accurate data, however, resulted from simultaneous analysis of the proton decoupled 13C spectra and 31P(13C) satellite spectra. The 13C? 31P couplings are strongly influenced by the proximity and orientation of the phosphorus lone pair electrons. The first 31P? 31P coupling in an aromatic diphosphine is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号