首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, mono- and di-alkyl cationic surfactants were used to prepare organoclays through ion exchange and the prepared organoclays were characterised by X-ray diffraction (XRD) and thermogravimetric analysis (TG). Larger basal spacings were observed in the interlayer of the organoclays intercalated with DDDMA than organoclays intercalated with DDTMA. The DTG curves identify the thermal stability of organoclays intercalated with two different types of surfactants (DDTMA and DDDMA) and the different arrangements of the surfactant molecules intercalated in the montmorillonite. Both organoclays intercalated with organic surfactant molecules proved to be thermally stable at high temperature. This study provides an understanding of the structure and properties of organoclays, which will enhance the potential applications of organoclays in environmental remediation.  相似文献   

2.
The influence of water pH and cationic surfactant content on the interfacial properties and stability of an Algerian bitumen aqueous emulsion were investigated. While the stability was quantified by both the test-bottle method and size distribution measurements, the interfacial properties of the water-bitumen interface were assessed using interfacial tension measurements. Optical microscopy was also used to visualise the dispersed water droplets in the oil phase. The results showed that addition of the cationic surfactant at a concentration of 25 mmol L?1 in acidic water (pH 2) improves the bitumen emulsion stability and effectively decreases the interfacial tension.  相似文献   

3.
Influence of surfactant on gas bubble stability   总被引:2,自引:0,他引:2  
Gas-bubble stability is achieved either by a reduction in the Laplace pressure or by a reduction in the permeability of the gas-liquid interface. Although insoluble surfactants have been shown definitively in many studies to lower the permeability of the gas-liquid interface and hence increase the resistance to interfacial mass transfer, remarkably little work has been done on the effects of soluble surfactants. An experimental system was developed to measure the effect of the soluble surfactant dodecyl trimethylammonium bromide on the desorption and absorption of carbon dioxide gas through a quiescent planar interface. The desorption experiments conformed to the model of non-steady-state molecular diffusion. The absorption experiments, however, produced an unexpected mass transfer mechanism, with surface renewal, probably because of instability in the density gradient formed by the carbon dioxide. In general, the soluble surfactant produced no measurable reduction in the rate of interfacial mass transfer for desorption or absorption. This finding is consistent with the conclusion of Caskey and Barlage that soluble surfactants produce a significantly lower resistance to interfacial mass transfer than do insoluble surfactants. The dynamic adsorption and desorption of the surfactant molecules at the gas-liquid interface creates short-term vacancies, which presumably permit the unrestricted transfer of the gas molecules through the interface. This surfactant exchange does not occur for insoluble surfactants. Gas bubbles formed in the presence of a high concentration of soluble surfactant were observed to dissolve completely, while those formed in the presence of the insoluble surfactant stearic acid did not dissolve easily, and persisted for very long periods. The interfacial concentration of stearic acid rises during bubble dissolution, as it is insoluble, and must eventually achieve full monolayer coverage and a state of compression, lowering the permeability of the interface. Thus, insoluble surfactants or hydrophobic impurities from solid surfaces may account for increased bubble stability.  相似文献   

4.
5.
The uptake of the amphoteric surfactant, cocamidopropyl betaine (CAB) by a sodium montmorillonite clay was studied with respect to concentration and pH. A series of organoclays was prepared in which the basal spacings were found to depend on both parameters. Adjusting the solution pH during preparation influenced the adoption of either 1.8 or 2.0 nm spacing, whereas the 3.9 nm spacing in the same sample was unaffected. The presence of the carboxyl group in the CAB molecule enabled dispersion of the clay at higher pH by which means pure organoclays of high spacing could be obtained, whereas, without dispersing the clay, mixed populations were obtained. The results indicate the optimum parameters for preparing organoclays of desired spacings for use in clay-reinforced nanocomposites.  相似文献   

6.
Summary High resolution thermogravimetric analysis has been used to study the thermal decomposition of montmorillonite modified with octadecyltrimethylammonium bromide. Thermal decomposition occurs in 4 steps.The first step of mass loss is observed from ambient to 100°C temperature range and is attributed to dehydration of adsorbed water. The second step of mass loss occurs between 87.9 to 135.5°C temperature range and is also attributed to dehydration of water hydrating metal cations such as Na+. The third mass loss occurs between 179.0 and 384.5°C; it is assigned to the loss of surfactant. The fourth step is ascribed to the loss of OH units due to dehydroxylation of the montmorillonite and takes place between 556.0 and 636.3°C temperature range. These TG steps are related to the arrangement of the surfactant molecules intercalating the montmorillonite. Changes in the basal spacing of the clay with surfactant are followed by X-ray diffraction. Thermal analysis provides an indication of the stability of the organo-clay.  相似文献   

7.
Infrared (IR) spectroscopy using a smart endurance single bounce diamond attenuated total reflection (ATR) cell has been used to study the changes in the spectra of the surfactant octadecyltrimethylammonium (ODTMA) bromide upon intercalation into a sodium montmorillonite. The wavenumbers of bands attributed to CH-stretching and CH-bending vibrations, in general, decrease as the concentration of the surfactant measured in terms of the cation exchange capacity (CEC) up to 1.0 CEC. After this point, the bands increase approaching a value the same as that of the surfactant. Significant changes occur in the HCH deformation modes of the methyl groups of the surfactant. These changes are attributed to the methyl groups locking into the siloxane (SiO) surface of the montmorillonite. Such a concept is supported by changes in the SiO-stretching bands of the montmorillonite siloxane surface.  相似文献   

8.
New polymer-clay nanocomposites composed of poly(lactic acid) and a novel organoclay based on cocamidopropylbetaine (CAB) and sodium montmorillonite (MMT) were prepared by solution casting and characterised by X-Ray Diffraction Analysis (XRDA), Transmission Electron Microscopy (TEM) and Thermogravimetric Analysis (TGA). A similar series of composites based on PLA and Cloisite 30B, a commercially available organoclay, were prepared for comparison. The thermal stability of the CAB-MMT organoclays decreased with increasing surfactant loading. Experimental organoclays with an organic content similar to that of the commercial organoclay were found to be of comparable thermal stability. XRDA analysis of the PLA-organoclay nanocomposites showed that PLA intercalated the gallery space of both types of organoclay to similar extents and the increased spacing was confirmed by TEM. The thermal stabilities of the PLA-organoclay composites based on CAB-MMT were higher than those based on the commercial organoclay.  相似文献   

9.
Nanocomposites containing both polyethylene and montmorillonite clay organically modified with four different types of quaternary ammonium salts were obtained via direct melt intercalation. Thus, the main purpose of this work was to evaluate the effect of the organoclay on the thermal stability of polyethylene. The organoclays were characterized by XRD, FTIR, DSC and TG. The polyethylene/organoclay nanocomposites were studied by XRD, TEM, TG, besides an evaluation of their mechanical properties. The results showed that the salts were incorporated by intercalation between the layers of the organoclay and, apparently that the nanocomposites were more thermally stable than pure polyethylene.  相似文献   

10.
Journal of Thermal Analysis and Calorimetry - The paper presents a thermal performance analysis of a thermosyphon filled with graphene oxide nanofluid. It focuses on factors influencing thermal...  相似文献   

11.
The goal of this study was to assess the effects of surfactant addition on the stability and viscosity of concentrated alumina dispersions. The stabilizing effects of several candidate surfactants were investigated for concentrated dispersions of two different pseudoboehmite aluminas at pH 4 and 7. The stabilities of concentrated alumina dispersions treated by pH adjustment alone and by pH adjustment combined with surfactant addition were compared to assess the degree to which the surfactant enhanced stability. The initial rate of mass removal from a sedimenting alumina dispersion was used as a measure of stability.

The anionic surfactants Surfine WNT-A and DOWFAX 3B2 were identified as effective in enhancing the stability of concentrated alumina dispersions. The optimal doses of these surfactants for stabilizing 15% by weight VERSAL™ 250 alumina dispersions at pH 4 were determined to be about 4.6 × 10−5 mol g−1 for both surfactants. On the basis of the initial rate of mass removal, surfactant-stabilized 15 wt.% suspensions were found to be approximately 2.5 and 10.6 times more stable than similar dispersions stabilized electrostatically by pH adjustment alone. These more stable dispersions exhibited lower viscosities than observed for the alumina dispersions not subjected to surfactant addition. The results indicate that the stability of concentrated alumina dispersions can be enhanced by anionic surfactant addition, and that such surfactants may therefore help to control the rheology of concentrated dispersions of alumina in water.  相似文献   


12.
Controllable aggregate transitions were realized by mixing two kinds of cationic surfactants, hexylene-1,6-bis(dodecyldimethylammonium bromide) (C(12)C(6)C(12)Br(2)) and didodecyldimethylammonium bromide (DDAB). It was found that two parameters are the main factors determining the aggregation behavior of the mixed system, the total concentration of DDAB and C(12)C(6)C(12)Br(2) (C(T)), and the mole fraction of DDAB in the mixtures of DDAB and C(12)C(6)C(12)Br(2) (X(DDAB)). How these two parameters act on the aggregate transitions was studied in detail by various measurements including surface tension, turbidity, electrical conductivity, ζ potential, isothermal titration microcalorimetry, dynamic light scattering, cryogenic transmission electron microscopy, and (1)H NMR. When C(T) was constant, spontaneous vesicle-to-micelle transitions were found with decreasing X(DDAB) at high C(T). When X(DDAB) was constant, aggregate transitions were generated by gradually increasing C(T), depending on different X(DDAB) ranges. At X(DDAB) < 0.6, small spherical aggregates formed first and then transferred to vesicles, and finally the vesicles transitioned to micelles. At X(DDAB) ≥ 0.6, the progressive increase in C(T) led to aggregate transitions on the order of the arising of vesicles, the continuous growth of vesicles, the disruption of vesicles into micelles, and the final coexistence of vesicles and micelles. The hydrophobic interaction and electrostatic repulsion between DDAB and C(12)C(6)C(12)Br(2) together with the related degree of ionization and hydration of the surfactants were gradually adjusted by changing the ratio and the total concentration of these two surfactants, which should be responsible for the complicated aggregation behavior.  相似文献   

13.
DSC method was used to study thermal stability of nitrocompounds. It was assumed the model to estimate stability of solid phase in which perfect solid phase is totally stable and amorphous-liquid domains connected with impurities decompose according to the kinetic model determined for the liquid phase above the melting point. The influence of sample purity on relative stability, which is k l/k s — ratio of decomposition rate constants in liquid and solid phase, at temperature 20 K below the melting point was predicted. The increase of liquid domains in solid phase causes decrease of k l/k s ratio (relative stability) at chosen temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The aim of the present study was to compare the effect of different steam explosion treatments on the thermal degradation of a bleached cellulose. The intensity of a steam explosion treatment, which allows breakdown of the structural lignocellulosic material was determined by a correlation between time and temperature of the process.Results of this study showed that thermal degradation of cellulose fibres was limited when the severity factor applied was below 4.0. For higher intensities, determination of the degradation products in the water-soluble extract showed an important increase of the 5-hydroxymethyl-furfural concentration with the temperature. When the severity factor reached 5.2., TGA analysis showed that the increase of degradation products was coupled to an increase of the char level meaning a strong degradation of the cellulose. dTGA behaviour also showed that thermal stability of the steam explosion samples decreased with the intensity of the treatment. To conclude, a theoretical diagram predicting the degradation of the cellulose during the steam explosion treatment was established.  相似文献   

15.
Goto K  Taguchi S  Miyabe K  Haruyama K 《Talanta》1982,29(7):569-575
In the spectrophotometric determination of aluminium and iron with ferron (7-iodo-8-quinolinol-5-sulphonic acid, H(2)L), the addition of cationic surfactants greatly improves the linearity of the calibration curve and widens the useful pH range. The effect of cetyltrimethylammonium chloride (CTMAC) on the stepwise stability constants (K(1),K(2) and K(3)) of the ferron complexes of aluminium and iron (ML(+), ML(-)(2) and ML(3-)(3)) and on the acid-dissociation constants (K(a1) and K(a2)) of ferron has been studied in connection with the role of the surfactant. CTMAC greatly increases the value of K(3) while exerting little effect on K(1) and K(2), thus rendering ML(3-)(3) the predominant species even at very low concentration of free L(2-). It also has some effect on the acid-dissociation constants of ferron, but sometimes it acts to decrease the free L(2-) concentration. At is therefore concluded that the improvements due to addition of surfactant should be attributed to the increased K(3) value. The presence of surfactant micelles is not essential, because the surfactant has a favourable effect when present at well below its critical micelle concentration, and because the continuous variations plots show a peak at a point corresponding to the composition M: L: Q (Q = cationic surfactant) = 1:3:3.  相似文献   

16.
Temperature dependence of naphthalene sorption to four organoclays with different surfactant (CTMA+) packing densities was examined. The results showed that both DeltaH o and DeltaS o increase generally with CTMA+ packing density. For organoclays with a low CTMA(+) packing density, the sorption process is driven by both the enthalpy term (DeltaH(o)) and the entropy term (-T DeltaS o), with values ranging from -4.7 to -7.5 kJ mol(-1) and -15.9 to -20.8 kJ mol(-1), respectively. As the CTMA+ packing density increases, the sorption process is driven by the entropy term (from -29.2 to -65.0 kJ mol(-1)) while it is opposed by the enthalpy term (from 7.9 to 40.5 kJ mol(-1)). These results indicate that the enthalpy demand for cavity formation within the surfactant aggregates and the mixing entropy of solute with surfactant aggregates both increase with the surfactant packing density. This means that the surfactant aggregates will form various organic phases as their packing density varies. Controlling the surfactant aggregates within an intermediate packing density range can improve the sorption capacities of the organoclays.  相似文献   

17.
A laboratory study was conducted to evaluate the effect of pH on the stability of oil-in-water emulsions stabilized by a commercial splittable surfactant Triton SP-190 by comparison with the results obtained by a common surfactant Triton X-100. The emulsion stability was explored by measuring the volume of oil phase separated and the size of the dispersed droplets. It was found that the addition of inorganic acids did not significantly affect the stability of emulsions stabilized by Triton X-100, but had a profound influence on the stability of emulsions stabilized by Triton SP-190. Moreover, the droplet size of a Triton X-100-stabilized emulsion and its dynamic interfacial activity were insensitive to acids. However, at lower pH the droplet size of the emulsions stabilized by Triton SP-190 was considerably increased. From the dynamic interfacial tension measurements the dynamic interfacial activity of Triton SP-190 at the oil/water interface was found to be strongly inhibited by the addition of acids, resulting in a slower decreasing rate of dynamic interfacial tension. The results demonstrate that the dramatic destabilization of Triton SP-190-stabilized emulsions could be realized by the use of acids, which evidently changed the interfacial properties of the surfactant and resulted in a higher coalescence rate of oil droplets.  相似文献   

18.
The aggregation of the cationic polymer-plasmid DNA complexes of two commonly used polymers, polyethyleneimine (PEI) and poly-l-lysine (PLL) were systematically compared. The complexation was studied in 5% glucose solution at 25 degrees C using dynamic light scattering and isothermal titration calorimetry. The aggregation of the complexes was controlled by addition of the surfactant polyoxyethylene stearate (POES). The stability of the complexes was evaluated using dextran sulphate (DS) as relaxing agent. The relaxation of the complexes in the presence of DS was studied using agarose gel electrophoresis. This study elucidates the role of surfactant in controlling the size of the PEI/pDNA complex and reveals the differences of the two polymers as complexing agents.  相似文献   

19.
The behaviour and the life time ( p) of different types of foam films (thin liquid films, for which DLVO-theory is valid; common black films, Newton black films) have been studied as a function of external pressure (P), applied in the Plateau-Gibbs-borders of the foam. The foam stability and the course of thep/P-dependence are determined mainly by the type of the foam films. A criterion for estimation of foam stability is proposed on the base of the obtained experimental results.  相似文献   

20.
The forces between hydrophobic surfaces with physisorbed DNA are markedly and irreversibly altered by exposure to DNA/cetyltrimethylammonium bromide (CTAB) mixtures. In this colloidal probe atomic force microscopy study of the interactions between a hydrophobic polystyrene particle and an octadecyltrimethylethoxysilane-modified mica surface in sodium bromide solutions, we measure distinct changes in colloidal forces depending on the existence and state of an adsorbed layer of DNA or CTAB-DNA complexes. For bare hydrophobic surfaces, a monotonically attractive approach curve and very large adhesion are observed. When DNA is adsorbed at low bulk concentrations, a long-range repulsive force dominates the approach, but on retraction some adhesion persists and DNA bridging is clearly observed. When the DNA solution is replaced with a CTAB-DNA mixture at relative low CTAB concentration, the length scale of the repulsive force decreases, the adhesion due to hydrophobic interactions greatly decreases, and bridging events disappear. Finally, when the surface is rinsed with NaBr solution, the length scale of the repulsive interaction increases modestly, and only a very tiny adhesion remains. These pronounced changes in the force behavior are consistent with CTAB-induced DNA compaction accompanied by increased DNA adsorption, both of which are partially irreversible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号