首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
苏慧娟 《分子催化》2011,25(1):43-48
采用等体积浸渍法制备了KOH-Au/Al<,2>O<,3>系列催化剂,考察了催化剂对低温CO氧化反应的初始活性和干、湿气氛下连续反应的稳定性能,并用电感耦合等离子发射光谱、红外光谱、高分辨透射电镜、紫外漫反射光谱等技术对催化剂进行了结构表征.结果表明:与母体催化剂(Au/Al<,2>O<,3>)相比,修饰催化剂(KOH...  相似文献   

2.
In this paper, we have shown that Cu/TiO(2) catalysts are highly active in CO oxidation. For instance, a 3.4% Cu/TiO(2) catalyst exhibits a higher turnover rate for the effective removal of CO in air than 3-5% Pt/TiO(2) and 20% Cu/ZnO/Al(2)O(3) catalysts. A small amount of Cu(+) species is formed during the calcination treatment at 225 °C, which is the main active phase for the CO oxidation. However, it is proposed that some highly dispersed CuO can also form in the TiO(2) lattice during the calcination treatment. Furthermore, a strong electron interaction between Cu(2+) in highly dispersed CuO and Ti(3+) on rutile TiO(2) (Cu(2+)+Ti(3+)→Cu(+)+Ti(4+)) has been shown to occur. Overall, the reduction of Cu(+) is a major factor that contributes to the reaction rate of the CO oxidation.  相似文献   

3.
A metal-organic framework, Cu(3)(BTC)(2), was synthesized and applied as an electro-responsive electrorheological material dispersed in insulating oil. Powder of crystalline Cu(3)(BTC)(2) exhibited excellent chain-like structures and controllable rheological properties in an applied electric field.  相似文献   

4.
The metal organic framework material Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate) has been synthesized using different routes: under solvothermal conditions in an autoclave, under atmospheric pressure and reflux, and by electrochemical reaction. Although the compounds display similar structural properties as evident from the powder X-ray diffraction (XRD) patterns, they differ largely in specific surface area and total pore volume. Thermogravimetric and chemical analysis support the assumption that pore blocking due to trimesic acid and/or methyltributylammoniummethylsulfate (MTBS) which has been captured in the pore system during reaction is a major problem for the electrochemically synthesized samples. Isobutane and isobutene adsorption has been studied for all samples at different temperatures in order to check the potential of Cu3(BTC)2 for the separation of small hydrocarbons. While the isobutene adsorption isotherms are of type I according to the IUPAC classification, the shape of the isobutane isotherm is markedly different and closer to type V. Adsorption experiments at different temperatures show that a somewhat higher amount of isobutene is adsorbed as compared to isobutane. Nevertheless, the differential enthalpies of adsorption are only different by about 5 kJ/mol, indicating that a strong interaction between the copper centers and isobutene does not drive the observed differences in adsorption capacity. The calculated breakthrough curves of isobutene and isobutane reveal that a low pressure separation is preferred due to the peculiar shape of the isobutane adsorption isotherms. This has been confirmed by preliminary breakthrough experiments using an equimolar mixture of isobutane and isobutene.  相似文献   

5.
The present study is focused on the kinetic investigation of the effects of H(2) and CO(2) on the rates related to the elementary steps of CO sorption over Au/gamma-Al(2)O(3). The kinetic study was carried out in a wide temperature range (50-300 degrees C) by the novel methodology of reversed flow gas chromatography (RF-GC). The findings of preliminary coadsorption studies of CO with H(2), O(2) and O(2)+H(2) indicate that a reductive pre-treatment of the Au catalyst with a mixture of CO in excess of H(2) can be more beneficial concerning CO oxidation activity at low temperatures, compared to the usual reduction in a diluted hydrogen atmosphere, most probably due to the easier activation of oxygen molecules. At high temperatures the rate of reversed water gas shift reaction becomes significant resulting in H(2) and CO(2) consumption. The kinetic findings indicate that hydrogen strongly influences the adsorption of CO over Au/gamma-Al(2)O(3), by enhancing CO adsorption at lower temperatures and weakening the strength CO binding. On the other hand, CO(2) adsorption competes that of CO under hydrogen-rich conditions. However, the strength of CO(2) bonding is higher compared to that of CO and it further increases at higher temperatures, in agreement with the observed deactivation of the selective CO oxidation in the presence of CO(2).  相似文献   

6.
Cu/Cr/Ba based catalysts were found to be nonprecious metal catalysts that can selectively oxidize CO in a H2-containing stream. The CO concentration in the methanol reformer effluent can be reduced from 1–2 mol% to about 0.3 mol% with only a very small extent of H2 oxidation.  相似文献   

7.
CO氧化不仅具有重要的实用价值,而且在基础研究中被用于考察反应机理及催化剂结构敏感性等一些重要问题,因此,该反应在催化领域中具有重要意义. Pt基催化剂被广泛应用于CO氧化反应.其催化活性取决于催化剂的制备方法.其中,碱金属如Na、K等助剂的添加可有效促进催化活性,红外光谱证据表明,其促进作用在于碱金属的添加可降低CO与表面Pt原子的相互作用.尽管如此,催化剂上反应动力学证据却十分缺乏.反应动力学的研究可以提供一些本证反应信息如反应基元步骤、反应速率表达式以及反应机理等.通过对比不同催化剂之间的反应动力学行为,可以进一步解释碱金属对催化剂结构以及反应行为的影响.因此在本工作中,我们制备了一系列以K为助剂的Pt/Al2O3催化剂,并进行了CO氧化的反应动力学研究,考察了助剂对CO反应级数和反应活化能的影响.结合原位红外光谱表征,进一步揭示了助剂在反应中的作用.通过对比不同Pt和K含量的催化剂上CO氧化反应活性,我们发现, K的添加能促进反应活性,且随着催化剂中K含量的增加,促进程度越明显.例如,0.42K-2Pt/Al2O3上T50温度比对应的2Pt/Al2O3降低了30oC.不同催化剂上CO氧化的反应动力学实验表明,反应速率随着CO的分压的增加而降低;但随着O2分压的增加而增大.幂函数反应速率表达式推导得到的反应级数发现,对于含K的催化剂其CO的反应级数(约为–0.2)明显比不含K的催化剂(约为–0.5)中高,说明K的添加减弱了CO与表面Pt原子之间的吸附能力.但对O2的反应级数影响较小.例如:在0.42K-2.0Pt/Al2O3上反应速率表达式为r =6.55′10–7pco–0.22po20.63;而在2.0Pt/Al2O3上为r =2.56′10–7pco–0.53po20.70.表观反应活化能的计算表明,含K的催化剂上表观反应活化能较低,进一步说明K的添加有利于反应进行.根据反应速率表达式,我们进行了基元步骤的推导,并计算了反应动力学参数.结果发现,与不含K的催化剂相比,含K的催化剂中本征反应速率常数明显增加,而CO吸附平衡常数降低了一半,表明K的存在使CO在Pt表面上的覆盖度降低.我们还通过原位红外光谱对比了催化剂上CO吸附行为的差异.数据表明,与不含K的催化剂相比, K的添加一方面降低了CO在催化剂表面的吸附量(峰面积变小);另一方面显著降低了CO在Pt表面上的脱附温度,说明两者之间的相互作用力减弱.综上所述,通过反应动力学和红外光谱实验,我们认为K助剂与表面Pt原子相互作用后生成了较为稳定的Pt–O–K物种.尽管该物种的具体结构目前还不明确,但我们的实验证据表明,该物种的存在可以有效减弱CO与表面Pt原子之间的相互作用,降低CO的表面覆盖度并有利于O2在Pt表面的竞争吸附,从而降低了表面吸附的CO与O2之间反应的能垒,促进了反应性能.  相似文献   

8.
《中国化学快报》2023,34(12):108520
High efficiency and low-cost catalyst-driven electrocatalytic CO2 reduction to CO production are of great significance for energy storage and development. The severe competitive hydrogen evolution reaction occurs at large negative potential window limits the achievement of the target product from CO2 at high efficiency. Here, we successfully prepared Cux/CdCO3 composite catalyst rich in interfaces, in which achieved high CO Faraday efficiency exceeded 90% in a wide potential window of 700 mV and highest value up to 97.9% at −0.90 V vs. RHE. The excellent performance can be ascribed to the positive contribution of Cux/CdCO3, which maintains a suitable high local pH value during electrochemical reduction, thus inhibiting the competitive hydrogen evolution reaction. Moreover, the compact structure between Cu and CdCO3 ensures fast electron transfer both inside catalysts and interface, thus speeding up the reaction kinetics of CO2 to CO conversion. Theoretically calculations further prove that the combination of Cu and CdCO3 provides the well-defined electronic structure for intermediates adsorption, significantly reducing the reaction barrier for the formation of CO. This work provides new insights into the design of efficient electrochemical CO2 reduction catalysts for inhibiting hydrogen evolution by adjusting the local pH effect.  相似文献   

9.
In this paper we used MOF-5 and Cu3(BTC)2 to separate CO2/CH4 and CH4/N2 mixtures under dynamic conditions. Both materials were synthesized and pelletized, thus allowing for a meaningful characterization in view of process scale-up. The materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). By performing breakthrough experiments, we found that Cu3(BTC)2 separated CO2/CH4 slightly better than MOF-5. Because the crystal structure of Cu3(BTC)2 includes unsaturated accessible metal sites formed via dehydration, it predominantly interacted with CO2 molecules and more easily captured them. Conversely, MOF-5 with a suitable pore size separated CH4/N2 more efficiently in our breakthrough test.  相似文献   

10.
The process of water adsorption on a dehydrated Cu(3)(BTC)(2) (copper (II) benzene 1,3,5-tricarboxylate) metal-organic framework (MOF) was studied with (1)H and (13)C solid-state NMR. Different relative amounts of water (0.5, 0.75, 1, 1.5, 2, and 5 mole equivalents with respect to copper) were adsorbed via the gas phase. (1)H and (13)C MAS NMR spectra of dehydrated and water-loaded Cu(3)(BTC)(2) samples gave evidence on the structural changes due to water adsorption within the MOF material as well as information on water dynamics. The analysis of (1)H spinning sideband intensities reveals differences in the (1)H-(63/65)Cu hyperfine coupling between dehydrated and water-loaded samples. The investigation was continued for 60 days to follow the stability of the Cu(3)(BTC)(2) network under humid conditions. NMR data reveal that Cu(3)(BTC)(2) decomposes quite fast with the decomposition being different for different water contents.  相似文献   

11.
A Cu(111) surface displays a low activity for the oxidation of carbon monoxide (2CO + O(2) → 2CO(2)). Depending on the temperature, background pressure of O(2), and the exposure time, one can get chemisorbed O on Cu(111) or a layer of Cu(2)O that may be deficient in oxygen. The addition of ceria nanoparticles (NPs) to Cu(111) substantially enhances interactions with the O(2) molecule and facilitates the oxidation of the copper substrate. In images of scanning tunneling microscopy, ceria NPs exhibit two overlapping honeycomb-type moire? structures, with the larger ones (H(1)) having a periodicity of 4.2 nm and the smaller ones (H(2)) having a periodicity of 1.20 nm. After annealing CeO(2)/Cu(111) in O(2) at elevated temperatures (600-700 K), a new phase of a Cu(2)O(1+x) surface oxide appears and propagates from the ceria NPs. The ceria is not only active for O(2) dissociation, but provides a much faster channel for oxidation than the step edges of Cu(111). Exposure to CO at 550-750 K led to a partial reduction of the ceria NPs and the removal of the copper oxide layer. The CeO(x)/Cu(111) systems have activities for the 2CO + O(2) → 2CO(2) reaction that are comparable or larger than those reported for surfaces of expensive noble metals such as Rh(111), Pd(110), and Pt(100). Density-functional calculations show that the supported ceria NPs are able to catalyze the oxidation of CO due to their special electronic and chemical properties. The configuration of the inverse oxide/metal catalyst opens new interesting routes for applications in catalysis.  相似文献   

12.
The structural and catalytic properties of SiO2- and TiO2 -supported Pt-Au bimetallic catalysts prepared by coimpregnation were compared with those of samples of similar composition synthesized from a Pt2Au4(C{triple bond}CBut)8 cluster precursor. The smallest metal particles were formed when the bimetallic cluster was used as a precursor and TiO2 as the support. FTIR data indicate that highly dispersed Au crystallites in these samples, presumably located in close proximity to Pt, are capable of linearly coordinating CO molecules with a characteristic vibration observed at 2111 cm(-1). The cluster-derived Pt2Au4/TiO2 samples were the only ones exhibiting low-temperature CO oxidation activity, indicating that both the high dispersion of Au and the nature of the support are important factors affecting the catalytic activity for this system.  相似文献   

13.
Different MCM-41 samples containing framework iron were prepared and tested in CO oxidation showing unprecedented high activities after reduction in hydrogen above 773 K.  相似文献   

14.
采用水热合成法制备了一系列不同金属掺杂的Ce-M(M=Fe、Ni和Cu)复合氧化物,运用低温N2吸附-脱附、XRD、H2-TPR、拉曼光谱和XPS等表征技术对Ce-M复合氧化物的结构与其CO低温氧化反应性能之间的关系进行了关联。结果表明,将Fe、Ni和Cu掺入CeO2明显提高了其氧空位的含量,提升了晶格氧的流动性,从而使Ce-M催化剂的还原能力和催化活性高于纯CeO2。其中,CeCu催化剂氧空位最多、还原能力最好,催化活性最高,130 ℃下即可将CO完全氧化;其次是CeNi催化剂,180 ℃时实现CO完全氧化;与之相比,CeFe催化剂的活性最差,200 ℃时的CO转化率仅为92%。  相似文献   

15.
16.
17.
18.
用柠檬酸配合法制备REFeO~3 (RE=la, Pr, Nd, Sm, Eu, Gd, 及Dy)。用XRD测定了REFeO~3的钙钛矿结构。用CO还原脉冲及O~2氧化脉冲证实REFeO~3上CO氧化为Redox机理。用外循环流动无梯度反应器研究CO氧化稳态动力学。动力学方程中的参数用正交设计法估计。催化剂用CO还原的速率常数k~1比还原了的催化化剂用O~2再氧化速率常数k~2要大, k~1/k~2值在4.22~133之间, 这说明在REFeO~3上CO氧化的控制步骤为还原催化剂的再氧化。用脉冲法得到的CO转化率(X~C~O)比O~2的转化率(X~O~2)要大。脉冲法证实稳态动力学控制步骤的结论。Redox动力学方程式(9)可简化为控制步骤方程式(11)。催化剂还原速度常数与一定P~C~O及P~O~2下的反应速度呈近似的线性关系。在REFeO~3上CO氧化存在补偿效应。  相似文献   

19.
杨琦  杜林颖  王旭  贾春江  司锐 《催化学报》2016,(8):1331-1339
在过去的25年,纳米金催化剂上 CO氧化反应得到广泛研究,但始终没有一致的结论。这是因为影响纳米金催化活性的因素很多,包括金的价态、载体的性质、氧空位、金属与载体之间的相互作用等,尤其是各影响因素之间相互牵制,增加了催化反应机理的研究难度。氧化铈载体表面氧缺陷的浓度较高,有利于活性金属组分在其表面的稳定和分散,因此氧化铈纳米晶负载的 Au催化剂受到广泛关注。此外,当 CeO2晶格中部分 Ce被化学性质不同的其它元素取代后,可以促进 CeO2晶格氧的活化,提高氧的储放能力,从而有利于催化反应进行。因此,本文采用水热法合成了组成均匀的 CeO2, CeZrOx和 CeZrLaOx三个载体,并通过沉淀-沉积法负载金。利用 X射线衍射(XRD)、拉曼光谱(Raman)、X射线光电子能谱(XPS)、高分辨透射电镜(HRTEM)、X射线吸收精细结构(XAFS)和氢气程序升温还原(H2-TPR)等技术分析了催化剂的物相结构、表面性质、形貌以及金纳米颗粒的大小和价态等性质,并结合其在 CO氧化反应中催化性能的差异,探讨影响金催化剂活性的关键因素。 XRD, TEM, HRTEM和 XAFS结果表明,三个载体上所得金纳米颗粒的平均尺寸都在2–4 nm,且分散较好; XPS结果表明,影响催化剂活性的关键因素不是金的价态,而是载体表面的活性氧物种。从Raman结果可知,掺杂后的氧化铈载体上氧空位浓度明显增加,因而催化剂活性都有所提高。 H2-TPR进一步探讨了三个载体以及负载金后其氧化还原能力的变化,结果表明,金和载体之间的相互作用可以增强载体的氧化还原性能以及表面氧空位浓度,进一步提高了催化剂活性,而负载金催化剂氧化还原性能的变化与载体的组成密切相关。由于锆的掺杂可使金与载体之间相互作用减弱,而镧则增强了二者间相互作用,因此 Au/CeZrLaOx催化剂上锆和镧的协同掺杂作用使其表面活性氧物种浓度最高,低温时表现出最高的催化活性。  相似文献   

20.
The effects of CeO2 contents and silica carder porosity with their pore diameters ranging from 5.2 nm to 12.5 nm of CuO-CeO2/SiO2 catalysts in CO oxidation were investigated. The catalysts were characterized by N2 adsorption/desorption at low temperature, X-ray diffraction (XRD), temperature-programmed reduction by H2 (H2-TPR), oxygen temperature programmed desorption (O2-TPD) and X-ray photoelectron spectroscopy (XPS). The results suggested that, the ceria content and the porosity of SiO2 carder possessed great impacts on the structures and catalytic performances of CuO-CeO2/SiO2 catalysts. When appropriate content of CeO2(Ce content ≤8 wt%) was added, the catalytic activity was greatly enhanced. In the catalyst supported on silica carrier with larger pore diameter, higher dispersion of CuO was observed, better agglomeration-resistant capacity was displayed and more lattice oxygen could be found, thus the CuO-CeO2 supported on Si-1 showed higher catalytic activity for low-temperature CO oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号