首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel two-phase diffuse-interface model is used to simulate flows inside a Hele-Shaw cell. The model assumes that the two phases coexist inside the diffuse interface, with different velocities and properties. A separate equation is used to calculate the slip velocity between the two phases inside the diffuse interface. It is shown that for one-dimensional flows parallel to the diffuse interface, the results are independent of the diffuse-interface width, regardless of the magnitude of the density and viscosity contrasts between the phases. This two-phase approach is coupled with a phase-field equation for calculating the interface motion. The model is applied to a buoyancy-driven two-phase flow involving a Rayleigh-Taylor instability and validated through a comparison with available sharp-interface results. The flows and interface topology changes are investigated for large density and viscosity contrasts between the phases. The convergence of the results with respect to the interface width is examined in detail. It is shown that the two-phase model converges better than a standard diffuse-interface model that assumes the presence of a single velocity inside the diffuse interface. Remaining interface width dependencies can be attributed to the capillary stress term in the momentum equation.  相似文献   

2.
A finite-difference/front-tracking method is developed for computations of interfacial flows with soluble surfactants. The method is designed to solve the evolution equations of the interfacial and bulk surfactant concentrations together with the incompressible Navier–Stokes equations using a non-linear equation of state that relates interfacial surface tension to surfactant concentration at the interface. The method is validated for simple test cases and the computational results are found to be in a good agreement with the analytical solutions. The method is then applied to study the cleavage of drop by surfactant—a problem proposed as a model for cytokinesis [H.P. Greenspan, On the dynamics of cell cleavage, J. Theor. Biol. 65(1) (1977) 79; H.P. Greenspan, On fluid-mechanical simulations of cell division and movement, J. Theor. Biol., 70(1) (1978) 125]. Finally the method is used to model the effects of soluble surfactants on the motion of buoyancy-driven bubbles in a circular tube and the results are found to be in a good agreement with available experimental data.  相似文献   

3.
A level-set continuum surface force method is presented to compute two-phase flows with insoluble surfactant. Our method recasts the Navier–Stokes equations for a two-phase flow with insoluble surfactant as “one-fluid” formulation. Interfacial transport and interfacial jump conditions are treated using the level-set method and the discrete Dirac function. Based on the density-weighted projection method, a stable semi-implicit scheme is used to decouple the velocity components in solving the regularized Navier–Stokes equations. It allows numerical simulations for a wide range of viscosity ratios and density ratios.Numerical simulations on single drop deformation in a 2D shear flow are presented. Simulations on two drop interaction shows that surfactants can play a critical role in preventing drop coalescence. A fully 3D simulation demonstrating the physical interactions of multiple surfactant-laden drops is presented.  相似文献   

4.
In this paper a conservative phase-field method based on the work of Sun and Beckermann [Y. Sun, C. Beckermann, Sharp interface tracking using the phase-field equation, J. Comput. Phys. 220 (2007) 626–653] for solving the two- and three-dimensional two-phase incompressible Navier–Stokes equations is proposed. The present method can preserve the total mass as the Cahn–Hilliard equation, but the calculation and implementation are much simpler than that. The dispersion-relation-preserving schemes are utilized for the advection terms while the Helmholtz smoother is applied to compute the surface-tension force term. To verify the proposed method, several benchmarks are examined and shown to have good agreements with previous results. It also shows that the satisfactions of mass conservations are guaranteed.  相似文献   

5.
This paper reports a new numerical scheme of the lattice Boltzmann method for calculating liquid droplet behaviour on particle wetting surfaces typically for the system of liquid–gas of a large density ratio. The method combines the existing models of Inamuro et al. [T. Inamuro, T. Ogata, S. Tajima, N. Konishi, A lattice Boltzmann method for incompressible two-phase flows with large density differences, J. Comput. Phys. 198 (2004) 628–644] and Briant et al. [A.J. Briant, P. Papatzacos, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion in a liquid–gas system, Philos. Trans. Roy. Soc. London A 360 (2002) 485–495; A.J. Briant, A.J. Wagner, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion: I. Liquid–gas systems. Phys. Rev. E 69 (2004) 031602; A.J. Briant, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion: II. Binary fluids, Phys. Rev. E 69 (2004) 031603] and has developed novel treatment for partial wetting boundaries which involve droplets spreading on a hydrophobic surface combined with the surface of relative low contact angles and strips of relative high contact angles. The interaction between the fluid–fluid interface and the partial wetting wall has been typically considered. Applying the current method, the dynamics of liquid drops on uniform and heterogeneous wetting walls are simulated numerically. The results of the simulation agree well with those of theoretical prediction and show that the present LBM can be used as a reliable way to study fluidic control on heterogeneous surfaces and other wetting related subjects.  相似文献   

6.
周军  蔡力  周凤岐 《中国物理 B》2008,17(5):1535-1544
We propose a hybrid scheme for computations of incompressible two-phase flows. The incompressible constraint has been replaced by a pressure Poisson-like equation and then the pressure is updated by the modified marker and cell method. Meanwhile, the moment equations in the incompressible Navier-Stokes equations are solved by our semidiscrete Hermite central-upwind scheme, and the interface between the two fluids is considered to be continuous and is described implicitly as the 0.5 level set of a smooth function being a smeared out Heaviside function. It is here named the hybrid scheme. Some numerical experiments are successfully carried out, which verify the desired efficiency and accuracy of our hybrid scheme.  相似文献   

7.
In immiscible two-phase flows, jumps or kinks are present in the velocity and pressure fields across the interfaces of the two fluids. The extended finite element method (XFEM) is able to reproduce such discontinuities within elements. Robust and accurate interface capturing schemes with no restrictions on the interface topology are thereby enabled. This paper investigates different enrichment schemes and time-integration schemes within the XFEM. Test cases with and without surface tension on moving or stationary meshes are studied and compared to interface tracking results when possible. A particularly useful setting is extracted which is recommended for two-phase flows. An extension of this formulation for the simulation of free-surface flows and of floating objects is proposed.  相似文献   

8.
A balanced force refined level set grid method for two-phase flows on structured and unstructured flow solver grids is presented. To accurately track the phase interface location, an auxiliary, high-resolution equidistant Cartesian grid is introduced. In conjunction with a dual-layer narrow band approach, this refined level set grid method allows for parallel, efficient grid convergence and error estimation studies of the interface tracking method. The Navier–Stokes equations are solved on an unstructured flow solver grid with a novel balanced force algorithm for level set methods based on the recently proposed method by Francois et al. [M.M. Francois, S.J. Cummins, E.D. Dendy, D.B. Kothe, J.M. Sicilian, M.W. Williams, A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework, J. Comput. Phys. 213 (2006) 141–173] for volume of fluid methods on structured grids. To minimize spurious currents, a second order converging curvature evaluation technique for level set methods is presented. The results of several different test cases demonstrate the effectiveness of the proposed method, showing good mass conservation properties and second order converging spurious current magnitudes.  相似文献   

9.
In the present study we propose a charge-conservative scheme to solve two-phase electrohydrodynamic (EHD) problems using the volume-of-fluid (VOF) method. EHD problems are usually simplified by assuming that the fluids involved are purely dielectric (insulators) or purely conducting. Gases can be considered as perfect insulators but pure dielectric liquids do not exist in nature and insulating liquids have to be approximated using the “Taylor–Melcher leaky dielectric model” [1], [2] in which a leakage of charge through the liquid due to ohmic conduction is allowed. It is also a customary assumption to neglect the convection of charge against the ohmic conduction. The scheme proposed in this article can deal with any EHD problem since it does not rely on any of the above simplifications. An unrestricted EHD solver requires not only to incorporate electric forces in the Navier–Stokes equations, but also to consider the charge migration due to both conduction and convection in the electric charge conservation equation [3]. The conducting or insulating nature of the fluids arise on their own as a result of their electric and fluid mechanical properties. The EHD solver has been built as an extension to Gerris, a free software solver for the solution of incompressible fluid motion using an adaptive VOF method on octree meshes developed by Popinet [4], [5].  相似文献   

10.
We develop in this paper a moving mesh spectral method for the phase-field model of two-phase flows with non-periodic boundary conditions. The method is based on a variational moving mesh PDE for the phase function, coupled with efficient semi-implicit treatments for advancing the mesh function, the phase function and the velocity and pressure in a decoupled manner. Ample numerical results are presented to demonstrate the accuracy and effectiveness of the moving mesh spectral method.  相似文献   

11.
Using lattice Boltzmann approach, a phase-field model is proposed for simulating droplet motion with soluble surfactants. The model can recover the Langmuir and Frumkin adsorption isotherms in equilibrium. From the equilibrium equation of state, we can determine the interfacial tension lowering scale according to the interface surfactant concentration. The model is able to capture short-time and long-time adsorption dynamics of surfactants. We apply the model to examine the effect of soluble surfactants on droplet deformation, breakup and coalescence. The increase of surfactant concentration and attractive lateral interaction can enhance droplet deformation, promote droplet breakup, and inhibit droplet coalescence. We also demonstrate that the Marangoni stresses can reduce the interface mobility and slow down the film drainage process, thus acting as an additional repulsive force to prevent the droplet coalescence.  相似文献   

12.
In two-phase flow, the presence of inter-phasal surface – the interface – causes additional terms to appear in LES formulation. Those terms were ignored in contemporary works, for the lack of model and because the authors expected them to be of negligible influence. However, it has been recently shown by a priori DNS simulations that the negligibility assumption can be challenged. In the present work, a model for one of the sub-grid two-phase specific terms is proposed, using deconvolution of the velocity field and advection of the interface using that field. Using the model, the term can be included into LES. A brief presentation of the model is followed by numerical tests that assess the model’s performance by comparison with a priori DNS results.  相似文献   

13.
A robust finite volume method for the solution of high-speed compressible flows in multi-material domains involving arbitrary equations of state and large density jumps is presented. The global domain of interest can include a moving or deformable subdomain that furthermore may undergo topological changes due to, for example, crack propagation. The key components of the proposed method include: (a) the definition of a discrete surrogate material interface, (b) the computation of a reliable approximation of the fluid state vector on each side of a discrete material interface via the construction and solution of a local, exact, two-phase Riemann problem, (c) the algebraic solution of this auxiliary problem when the equation of state allows it, and (d) the solution of this two-phase Riemann problem using sparse grid tabulations otherwise. The proposed computational method is illustrated with the three-dimensional simulation of the dynamics of an underwater explosion bubble.  相似文献   

14.
15.
This paper extends our previous third-order method [S. Li, High order central scheme on overlapping cells for magneto-hydrodynamic flows with and without constrained transport method, J. Comput. Phys. 227 (2008) 7368–7393] to the fourth-order. Central finite-volume schemes on overlapping grid are used for both the volume-averaged variables and the face-averaged magnetic field. The magnetic field at the cell boundaries falls within the dual grid and is naturally continuous so that our method eliminates the instability triggered by the discontinuity in the normal component of the magnetic field. Our fourth-order scheme has much smaller numerical dissipation than the third-order scheme. The divergence-free condition of the magnetic field is preserved by our fourth-order divergence-free reconstruction and the constrained transport method. Numerical examples show that the divergence-free condition is essential to the accuracy of the method when a limiter is used in the reconstruction. The high-order, low-dissipation, and divergence-free properties of this method make it an ideal tool for direct magneto-hydrodynamic turbulence simulations.  相似文献   

16.
17.
18.
The force-coupling method, previously developed for spherical particles suspended in a liquid flow, is extended to ellipsoidal particles. In the limit of Stokes flow, there is an exact correspondence with known analytical results for isolated particles. More generally, the method is shown to provide good approximate results for the particle motion and the flow field both in viscous Stokes flow and at finite Reynolds number. This is demonstrated through comparison between fully resolved direct numerical simulations and results from the numerical implementation of the force-coupling method with a spectral/hp element scheme. The motion of settling ellipsoidal particles and neutrally buoyant particles in a Poiseuille flow are discussed.  相似文献   

19.
20.
A direct-forcing fictitious domain (DF/FD) method for the simulation of particulate flows is reported. The new method is a non-Lagrange-multiplier version of our previous DLM/FD code and is obtained by employing a discrete δ-function in the form of bi(tri-) function to transfer explicitly quantities between the Eulerian and Lagrangian nodes, as in the immersed boundary method. Due to the use of the collocation-point approach for the rigidity constraint and the integration over the particle domain, the Lagrangian nodes are retracted a little from the particle boundary. Our method in case of a prescribed velocity on the boundary is verified via the comparison to the benchmark results on the flow over a fixed cylinder in a wide channel and to our spectral-element results for a channel with the width of four cylinder diameters. We then verify our new method for the case of the particulate flows through various typical flow situations, including the sedimentation of a circular particle in a vertical channel, the sedimentation of a sphere in a vertical pipe, the inertial migration of a sphere in a circular Poiseuille flow, the behavior of a neutrally-buoyant sphere in Couette flow, and the rotation of a prolate spheroid in Couette flow. The accuracy and robustness of the new method are fully demonstrated, in particular for the case of relatively low Reynolds numbers and the neutrally-buoyant case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号