首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fission fragments from a 252Cf source have been used to study fast heavy ion induced desorption of ions and luminescence in the wavelength region 200–680 nm from samples of Csl, the amino acids valine, isoleucine and tyrosine, and of the peptide substance P. All samples emit photons under fast heavy ion bombardment. Most of the emission is confined to the near-UV region and within narrow time profiles. Analysis of the fast decay regions of the time profiles show that all the compounds have at least a fast and a slow decay component, both in the nanosecond region. The use of such narrow photon signals as start time markers for time-of-flight measurements (TOF) has been demonstrated. As the photon signal is derived directly from the desorption event it gives the true number of starts for a secondary ion TOF spectrum. Characteristics of the photon emission from a CsI target together with correlation studies between the desorbed secondary ions and the photon signal indicate that the light emission is from the bulk of the material and not correlated with the secondary ions.  相似文献   

2.
Theoretical approaches for radiative ionization (RI) in energetic collisions of highly stripped projectiles with target atoms are reviewed and set into context with related processes. The interrelation between RI and electron-nucleus bremsstrahlung is displayed with the help of inverse kinematics. Particular emphasis is laid on the forward-peak region of the electron spectrum resulting from target electrons which are slowed down to approximately zero velocity in the projectile frame of reference. The forward-peak intensity and shape for RI is contrasted to the one obtained from nonradiative capture to continuum. The ridge in the photon spectrum related to forward-peak electrons can unambiguously be identified in measured doubly differential photon emission cross sections resulting from ion–atom collisions at relativistic impact energies.  相似文献   

3.
This letter presents the first application of high energy, single nanoparticle probes (e.g., 520 keV Au(400) 2nm NP) in the characterization of surfaces containing fluorescent proteins (e.g., GFP variants) by their co-emitted photon, electron and secondary ion signals. NP induced protein luminescence increases with the NP incident energy, is originated by the NP impact and is transferred to the protein fluorophor via electronic energy transfer. Multi-electron emission is observed per single NP impacts and their distributions are specific to the target morphology and composition. Fragment ions of protein sub-units consisting of 2-7 amino acid peptides are observed under individual NP impacts that can be correlated to the random protein orientation relative to the impact site (e.g., outer layer or "skin" of the protein).  相似文献   

4.
This paper reviews a range of instrumental microanalytical techniques for their potential in following the development of nanotechnology. Needs for development in secondary ion mass spectrometry (SIMS), transmission electron microscopy (TEM), Auger emission spectrometry (AES) laser mass spectrometry, X-ray photon spectroscopy are discussed as well as synchrotron-based methods for analysis. Objectives for development in all these areas for the coming 5 years are defined. Developments of instrumentation in three European synchrotron installations are given as examples of ongoing development in this field.  相似文献   

5.
An energy-sensitive superconducting tunnel junction (STJ) detector was used to measure the secondary electron emission efficiency, epsilon(e), for a microchannel plate (MCP) detector bombarded by large (up to 66 kDa), slow moving (<40 km/s) molecular ions. The method used is new and provides a more direct procedure for measuring the efficiency of secondary electron emission from a surface. Both detectors were exposed simultaneously to nearly identical ion fluxes. By exposing only a small area of the MCP detector to ions, such that the area exposed was effectively the same as the size of the STJ detector, the number of ions detected with each detector were directly comparable. The STJ detector is 100% efficient for detecting ions in the energy regime investigated and therefore it can be used to measure the detection efficiency and secondary electron emission efficiency of the MCP. The results are consistent with measurements made by other groups and provide further characterization of the loss in sensitivity noted previously when MCP detectors have been used to detect high-mass ions. Individual molecular ions of mass 66 kDa with 30 keV kinetic energy were measured to have about a 5% probability of producing one or more electrons when impacting the MCP. When ion energy was reduced to 10 keV, the detection probability decreased to 1 %. The secondary electron yield was calculated from the secondary electron emission efficiency and found to scale linearly with the mass of the impinging molecular ion and to about the fourth power of ion velocity. Secondary electrons were observed for primary ion impacts >5 km/s, regardless of mass, and no evidence of a velocity (detection) threshold was observed. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

6.
Lin WC  Liu CP  Kuo CH  Chang HY  Chang CJ  Hsieh TH  Lee SH  You YW  Kao WL  Yen GJ  Huang CC  Shyue JJ 《The Analyst》2011,136(5):941-946
Cluster ion sputtering has been proven to be an effective technique for depth profiling of organic materials. In particular, C(60)(+) ion beams are widely used to profile soft matter. The limitation of carbon deposition associated with C(60)(+) sputtering can be alleviated by concurrently using a low-energy Ar(+) beam. In this work, the role of this auxiliary atomic ion beam was examined by using an apparatus that could analyze the sputtered materials and the remaining target simultaneously using secondary ion mass spectrometry (SIMS) and X-ray photoelectron spectrometry (XPS), respectively. It was found that the auxiliary 0.2 kV Ar(+) stream was capable of slowly removing the carbon deposition and suppresses the carbon from implantation. As a result, a more steady sputtering condition was achieved more quickly with co-sputtering than by using C(60)(+) alone. Additionally, the Ar(+) beam was found to interfere with the C(60)(+) beam and may lower the overall sputtering rate and secondary ion intensity in some cases. Therefore, the current of this auxiliary ion beam needs to be carefully optimized for successful depth profiling.  相似文献   

7.
Aluminum nitride nanostructures are attractive for many promising applications in semiconductor nanotechnology. Herein we report on vapor-solid growth of quasi-aligned aluminum nitride nanocones on catalyst-coated wafers via the reactions between AlCl3 vapor and NH3 gas under moderate temperatures around 700 degrees C, and the growth mechanism is briefly discussed. The as-prepared wurtzite aluminum nitride nanocones grow preferentially along the c-axis with adjustable dimensions of the sharp tips in the range of 20-60 nm. The photoluminescence spectrum reveals a broad blue emission band with a fine photon structure while the field emission study shows a notable emission current with a moderate turn-on field as expected, suggesting their potential applications in light and electron emission nanodevices.  相似文献   

8.
The emission from two photoactive 14-membered macrocyclic ligands, 6-((naphthalen-1-ylmethyl)-amino)-trans-6,13-dimethyl-13-amino-1,4,8,11-tetraaza-cyclotetradecane (L1) and 6-((anthracen-9-ylmethyl)-amino)-trans-6,13-dimethyl-13-amino-1,4,8,11-tetraaza-cyclotetradecane (L2) is strongly quenched by a photoinduced electron transfer (PET) mechanism involving amine lone pairs as electron donors. Time-correlated single photon counting (TCSPC), multiplex transient grating (TG), and fluorescence upconversion (FU) measurements were performed to characterize this quenching mechanism. Upon complexation with the redox inactive metal ion, Zn(II), the emission of the ligands is dramatically altered, with a significant increase in the fluorescence quantum yields due to coordination-induced deactivation of the macrocyclic amine lone pair electron donors. For [ZnL2]2+, the substituted exocyclic amine nitrogen, which is not coordinated to the metal ion, does not quench the fluorescence due to an inductive effect of the proximal divalent metal ion that raises the ionization potential. However, for [ZnL1]2+, the naphthalene chromophore is a sufficiently strong excited-state oxidant for PET quenching to occur.  相似文献   

9.
Photon emission originating from sputtering of a polycrystalline aluminum surface under 1–10 keV ion (H+, He+, Ar+, Kr+ and Xe+) bombardment has been studied. Measured photon emission yields from the 3d 2D3/2 resonance transition of sputtered excited Al atoms and calculated nuclear stopping powers are compared. The results demonstrate that elastic collisions play a major role in photon emission. Moreover, measurements of photon intensity as a function of the distance from the target surface show that decays of sputtered excited ions Al+ and Al2+ are faster than decays of excited Al atoms, and less affected by cascade repopulation and de-excitation of fast ions.  相似文献   

10.
Novel thermodynamically stable supramolecular donor-acceptor dyads have been synthesized. In particular, we assembled successfully C(60), as an electron acceptor, with the strong electron donor TTF through a complementary guanidinium-carboxylate ion pair. Two strong and well-oriented hydrogen bonds, in combination with ionic interactions, ensure the formation of stable donor-acceptor dyads. The molecular architecture has been fine-tuned by using chemical spacers of different lengths (i.e., phenyl versus biphenyl) and functional groups (i.e., ester versus amide), thus providing meaningful incentives to differentiate between through-bond and through-space electron-transfer scenarios. In electrochemical studies, both the donor and acceptor character of the TTF and C(60) units, respectively, have been clearly identified. Steady-state and time-resolved emission studies, however, show a solvent-dependent fluorescence quenching in C(60)*TTF dyads as well as the formation of the C(60)(*)(-)*TTF(*)(+) radical ion pairs, for which we determined lifetimes that are in the range of hundred of nanoseconds to microseconds. The complex network that connects C(60) with TTF in the dyads and the flexible nature of the spacer result in through-space electron-transfer processes. This first example of electron transfer in C(60)-based dyads, connected by strong hydrogen bonds, demonstrates that this approach can add outstanding benefits to the construction of artificial photosynthetic systems that bear a closer resemblance to the natural one.  相似文献   

11.
Ion bombardment of pure water ice by Au+ monoatomic and Au3 + and C60 + polyatomic projectiles results in the emission of two series of water cluster ions-(H2O)n + and (H2O)nH+-with n ranging from 1 to >40. The cluster ion yields are very significantly higher under polyatomic ion bombardment than when using an Au+ primary ion. The yield of the protonated water species (H2O)nH+ is found to be enhanced by increasing ion fluence. C60 + bombardment results in a very dramatic increase in the (H2O)nH+ yield and decrease in the yield of (H2O)n +. Au3 + also significantly increased the yield of protonated species relative to the non-protonated but to a lesser extent than C60 +. Bombardment by Au+ also increased the yield of protonated species but to a very much smaller extent. The hypothesis that the protonated species may enhance the yield of [M+H]+ from solute molecules in solution has been investigated using two amino acids, alanine and arginine, and a nucleic base, adenine. The data suggest that the protons produced by the sputtering of water ice are depleted in the presence of these solutes and concurrently the yields of solute-related [M+H]+ and immonium secondary ions are greatly enhanced. These yield enhancements are analysed in the light of other possible contributors such as increased rates of sputtering under polyatomic beams and increased secondary ion yields as a consequence of solute dispersion. It is concluded that enhanced proton attachment is occurring in polyatomic sputtered frozen aqueous solutions.  相似文献   

12.
First evidence of photon emission from individual impacts of massive gold projectiles on solids for a number of projectile-target combinations is reported. Photon emission from individual impacts of massive Au(n) (+q) (1 ≤ n ≤ 400; q = 1-4) projectiles with impact energies in the range of 28-136 keV occurs in less than 10 ns after the projectile impact. Experimental observations show an increase in the photon yield from individual impacts with the projectile size and velocity. Concurrently with the photon emission, electron emission from the impact area has been observed below the kinetic emission threshold and under unlikely conditions for potential electron emission. We interpret the puzzling electron emission and correlated luminescence observation as evidence of the electronic excitation resulting from the high-energy density deposited by massive cluster projectiles during the impact.  相似文献   

13.
The ionization and fragmentation of C(60) fullerenes were investigated using matrix films covered with C(60) molecules and bombarded with 1.5-KeV He(+) ions. C(+), C(60)(+), and C(60)(++) ions were sputtered from the C(60) molecules that were physisorbed on Ar and Xe matrix films, whereas the sputtering of C(60) on the O(2) and C(8)F(18) matrix films induced an additional emission of ion adducts, such as (OC(60))(+) and (FC(60))(+), as well as the fragment ions, C(60-2n)(+) (n = 1-10). Very few ions were sputtered from the C(60) molecules that were adsorbed on the H(2)O matrix film and the Ni(111) substrate. The ions are thought to be created at the surface when C (C(60)) collides with the Ar, Xe, O, and F species via the electron-promotion mechanism, and the formation of quasi-molecules is manifested from the emission of the ion adducts. The fragmentation occurs during the interaction with the reactive species at the surface, and the delayed ionization/fragmentation of the internally excited C(60) molecules in the gas phase has negligible contribution in the present experiment. The matrix effect arises from the suppressed neutralization of the C(60)(+) ion because of the localization of a valence hole. The C(60)(+) ion undergoes neutralization on the H(2)O film because the hydrogen bond has some covalent character.  相似文献   

14.
Results for the X-ray emission efficiency (counts per C per sr) of K-lines for selected elements (C, Al, Si, Ti, Cu, Ge) and for the first time also for compounds and alloys (SiC, GaP, AlCu, TiAlC) are presented. An energy dispersive X-ray spectrometer (EDS) of known detection efficiency (counts per photon) has been used to record the spectra at a takeoff angle of 25 degrees determined by the geometry of the secondary electron microscope's specimen chamber. Overall uncertainty in measurement could be reduced to 5 to 10% in dependence on the line intensity and energy. Measured emission efficiencies have been compared with calculated efficiencies based on models applied in standardless analysis. The widespread XPP and PROZA models give somewhat too low emission efficiencies. The best agreement between measured and calculated efficiencies could be achieved by replacing in the modular PROZA96 model the original expression for the ionization cross section by the formula given by Casnati et al. (1982) A discrepancy remains for carbon, probably due to the high overvoltage ratio.  相似文献   

15.
C_(60)与含烯丙基胺聚合物加成物的荧光行为   总被引:1,自引:1,他引:1  
C_(60)与含烯丙基胺聚合物加成物的荧光行为田慧洁,陈立桅,姚光庆,金朝霞,李福绵(北京大学化学系北京100871)关键词脂肪胺,C_(60),聚烯丙基胺,荧光C60是一高度对称的笼状碳簇分子,室温下难以观察到荧光现象[1],但我们发现它与聚烯丙基胺...  相似文献   

16.
Using secondary electron emission (SEE) techniques, conditions for the traveling of electrons near a charged surface were studied. A simple analytical expression was found to relate the effective coefficient of secondary electron emission from the charged surface of an organic liquid layer with the primary-electron current. At low currents, the relationship is close to a root law, the pattern of the dependence does not change with the varying conductivity of the liquid, its thickness, and the charge spot area. This finding suggests that the effective secondary electron emission coefficient and, hence, the conditions of electron motion near a surface charge depend on the only parameter, the current density of incident electrons. According to the estimates of the dielectric permittivity of a liquid, its resistivity, and ion mobility, the effective SEE coefficient at low charging currents is formed in the ohmic mode of current flow through the liquid.  相似文献   

17.
Nanostructure formation by single slow highly charged ion impacts can be associated with high density of electronic excitations at the impact points of the ions. Experimental results show that depending on the target material these electronic excitations may lead to very large desorption yields in the order of a few 1000 atoms per ion or the formation of nanohillocks at the impact site. Even in ultra-thin insulating membranes the formation of nanometer sized pores is observed after ion impact. In this paper, we show recent results on nanostructure formation by highly charged ions and compare them to structures and defects observed after intense electron and light ion irradiation of ionic crystals and graphene. Additional data on energy loss, charge exchange and secondary electron emission of highly charged ions clearly show that the ion charge dominates the defect formation at the surface.  相似文献   

18.
Cluster C(60) ToF-SIMS (time-of-flight secondary ion mass spectrometry) operated in the event-by-event bombardment-detection method has been applied to: a) quantify the binding density of Au nanoparticles (AuNPs)-antiCD4 conjugates on the cell surface; b) identify the binding sites between AuNPs and antibody. Briefly, our method consists of recording the secondary ions, SIs, individually emitted from a single C(60) (1,2+) impact. From the cumulative mass spectral data we selected events where a specific SI was detected. The selected records revealed the SIs co-ejected from the nanovolume impacted by an individual C(60) with an emission area of ~ 10nm in diameter as an emission depth of 5-10 nm. The fractional coverage is obtained as the ratio of the effective number of projectile impacts on a specified sampling area (N(e)) to the total number of impacts (N(0)). In the negative ion mass spectrum, the palmitate (C(16)H(31)O(2) (-)) and oletate (C(18)H(33)O(2) (-)) fatty acid ions present signals from lipid membrane of the cells. The signals at m/z 197 (Au(-)) and 223 (AuCN(-)) originate from the AuNPs labeled antibodies (antiCD4) bound to the cell surface antigens. The characteristic amino acid ions validate the presence of antiCD4. A coincidence mass spectrum extracted with ion at m/z 223 (AuCN(-)) reveals the presence of cysteine at m/z 120, documenting the closeness of cysteine and the AuNP. Their proximity suggests that the binding site for AuNP on the antibody is the sulfur-terminal cysteine. The fractional coverage of membrane lipid was determined to be ~23% of the cell surfaces while the AuNPs was found to be ~21%. The novel method can be implemented on smaller size NPs, it should thus be applicable for studies on size dependent binding of NP-antibody conjugates.  相似文献   

19.
Dioxygen accelerates back electron transfer (BET) processes between a fullerene radical anion (C60) and a radical cation of zinc porphyrin (ZnP) in photolytically generated ZnP.+-C60.- and ZnP.+-H2P-C60.- radical ion pairs. The rate constant of BET increases linearly with increasing oxygen concentration without, however, forming reactive oxygen species, such as singlet oxygen or superoxide anion. When ferrocene (Fc) is used as a terminal electron donor moiety instead of ZnP (i.e., Fc-ZnP-C60), no catalytic effects of dioxygen were, however, observed for the BET in Fc+-ZnP-C60.-, that is, from C60.- to the ferricenium ion. In the case of ZnP-containing C60 systems, the partial coordination of O2 to ZnP.+ facilitates an intermolecular electron transfer (ET) from C60.- to O2. This rate-determining ET step is followed by a rapid intramolecular ET from O2.- to ZnP.+ in the corresponding O2.--ZnP.+ complex and hereby regenerating O2. In summary, O2 acts as a novel catalyst in accelerating the BET of the C60.--ZnP.+ radical ion pairs.  相似文献   

20.
Experimental and theoretical results are reviewed concerning the photon polarization and spin asymmetry in the elementary process of bremsstrahlung. In electron–photon coincidence experiments using an unpolarized primary beam (300 keV) the electron–nucleus bremsstrahlung was found to be almost completely linearly polarized. The same behavior was found in electron–electron bremsstrahlung. By using a transversely polarized electron beam the photon emission asymmetry was measured for fixed direction of the outgoing electrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号