首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two new dinuclear phenyltin(IV) complexes derived from N,N′‐bis(2‐hydroxybenzyl)‐1,2‐ethanebis(dithiocarbamate) ligand, [2‐HOC6H4CH2N(CS2SnPh3)CH2]2 ( 1 ) and [2‐HOC6H4CH2N(CS2SnClPh2)CH2]2 ( 2 ) have been synthesized and characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectra. The crystal structures of complexes 1 and 2 were determined by X‐ray single crystal diffraction and show that the dithiocarbamate ligand is coordinated to the tin atom in the anisobidentate manner and the tin atom is five‐coordinated. The coordination geometry of tin atom is best described as an intermediate between trigonal bipyramidal and square pyramidal with τ‐values of 0.63 and 0.53, respectively. Intermolecular hydrogen bonds (O H···S and O H···Cl) in 1 and 2 connect neighboring molecules into a one‐dimensional supramolecular chain with the centrosymmetric cyclic motifs. Complex 1 has potent in vitro cytotoxic activity against two human tumor cell lines, CoLo205 and Bcap37, while complex 2 displays weak cytotoxic activity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Three new diorganotin(IV) complexes, [Me2Sn(BDET] (2), [Bu2Sn(BDET)] (3), and [Ph2Sn(BDET)] (4), were synthesized by reacting R2SnCl2 (R = Me, Bu, and Ph) with 5-bromo-2-hydroxybenzaldehyde-N(4)-ethylthiosemicarbazone [H2BDET, (1)] in the presence of KOH in absolute methanol. The newly synthesized complexes were characterized by elemental analysis, molar conductivity, UV–vis, FT-IR, 1H, 13C, and 119Sn NMR spectroscopies. The molecular structure of 4 was confirmed by X-ray crystallography. X-ray crystallography revealed that the doubly deprotonated O,N,S-tridentate thiosemicarbazone coordinates to tin(IV), resulting in a distorted trigonal bipyramidal geometry. Their 1H, 13C, and 119Sn NMR spectra support a five-coordinate tin(IV) in solution for all complexes, in accord with the solid-state X-ray structure determined for 4. Compounds 14 were evaluated for their antibacterial activities against Staphylococcus aureus, Enterobacter aerogenes, Escherichia coli, and Salmonella typhi. The results exhibited that 24 were active with comparable potency compared to the standard drug. Antibacterial studies also indicated that the complexes have potential for biological evaluation.  相似文献   

4.
Four new diorganotin(IV) complexes of N‐(5‐halosalicylidene)tryptophane, R2Sn[5‐X‐2‐OC6H3CH?NCH(CH2Ind)COO] [Ind = 3‐indolyl; R, X = Et, Cl ( 1 ); Et, Br( 2 ); n‐Bu, Cl ( 3 ); n‐Bu, Br ( 4 )], were synthesized and characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectra. The crystal structures of complexes 1 – 3 were determined by X‐ray single crystal diffraction and showed that the tin atoms are in a distorted trigonal bipyramidal geometry and form five‐ and six‐membered chelate rings with the tridentate ligand. Intermolecular weak interactions in 1–3 link molecules, respectively, into a two‐dimensional array, a one‐dimensional infinite chain and a one‐dimensional double‐chain supramolecular structure. Bioassay results of the compounds indicated that the dibutyltin complexes 3 and 4 have potent in vitro cytotoxic activity against two human tumor cell lines, CoLo205 and Bcap37, while the diethyltin complexes 1 and 2 display weak cytotoxic activity. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Fourteen new diorganotin(IV) complexes of N‐(5‐halosalicylidene)‐α‐amino acid, R′2Sn(5‐X‐2‐OC6H3CH?NCHRCOO) (where X = Cl, Br; R = H, Me, i‐Pr; R′ = n‐Bu, Ph, Cy), were synthesized by the reactions of diorganotin halides with potassium salt of N‐(5‐halosalicylidene)‐α‐amino acid and characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectra. The crystal structures of Bu2Sn(5‐Cl‐2‐OC6H3CH?NCH(i‐Pr)COO) and Ph2Sn(5‐Br‐2‐OC6H3CH?NCH(i‐Pr)COO) were determined by X‐ray single‐crystal diffraction and showed that the tin atoms are in a distorted trigonal bipyramidal geometry and form five‐ and six‐membered chelate rings with the tridentate ligand. Bioassay results of a few compounds indicated that the compounds have strong cytotoxic activity against three human tumour cell lines, i.e. HeLa, CoLo205 and MCF‐7, and the activity decreased in the order Cy>n‐Bu>Ph for the R′ group bound to tin. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
A series of diorganotin complexes with Schiff base ligands, (E)‐N′‐(5‐bromo‐2‐hydroxybenzylidene)‐3‐hydroxy‐2‐naphthohydrazide, H2L1, and (E)‐N′‐(5‐chloro‐2‐hydroxybenzylidene)‐3‐hydroxy‐2‐naphthohydrazide, H2L2, were synthesized and characterized by elemental analysis, IR, 1H, 13C and 119Sn NMR spectroscopy. The molecular structures of the complexes, [(5‐bromo‐2‐oxidobenzylidene)‐3‐hydroxy‐2‐naphthohydrazidato]di(o‐chlorobenzyl)tin(IV) 6 and [(5‐chloro‐2‐oxidobenzylidene)‐3‐hydroxy‐2‐naphthohydrazidato]dibutyltin(IV) 9, were determined through single‐crystal X‐ray diffraction and revealed a distorted trigonal‐bipyramidal configuration. The in vitro cytotoxic activity of the Schiff bases and their diorganotin complexes was also evaluated against several human carcinoma cell lines, namely HT29 (human colon carcinoma cell line), SKOV‐3 (human ovarian cancer cell line), MCF7 (hormone‐dependent breast carcinoma cell line) and MRC5 (non‐cancer human fibroblast cell line). [(5‐Bromo‐2‐oxidobenzylidene)‐3‐hydroxy‐2‐naphthohydrazidato]dibutyltin(IV) 2 and [(5‐bromo‐2‐oxidobenzylidene)‐3‐hydroxy‐2‐naphthohydrazidato]dibenzyltin(IV) 5 were the most active diorganotin complexes of H2L1 ligand. Among the diorganotin complexes of H2L2 ligand, [(5‐chloro‐2‐oxidobenzylidene)‐3‐hydroxy‐2‐naphthohydrazidato]dicyclohexyltin(IV) 11 showed good cytotoxic activity against all the tested cell lines. As such, the above compounds can be considered agents with potential anticancer activities, and can therefore be investigated further in in vitro or in vivo anticancer studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The reaction of [SnMe2Cl2] with the bidentate ligand 4,7‐phenanthroline (4,7‐phen) resulted in the formation of [SnMe2Cl2 (4,7‐phen)]n ( 1a ) which is probably a polymeric chain in solution. On the other hand, the reaction of [SnEt2Cl2] with 4,7‐phen afforded the complex [Sn2Et4Cl41‐N‐4,7‐phen)2(μ‐κ2‐N,N‐4,7‐phen)] ( 1b ) which dissociates in dimethylsulfoxide solution. The reaction of [SnR2Cl2] (R = Me, Et) with 2,2′‐biquinoline (biq) yielded the complexes [SnMe2Cl22‐N,N‐biq)] ( 2a ) and [SnEt2Cl21‐N‐biq)2] ( 2b ) in the solid state. Moreover, the reaction of [SnR2Cl2] (R = Me, Et) with the tridentate ligand 4′‐(2‐furyl)‐2,2′:6′,2″‐terpyridine (ftpy) resulted in the formation of ionic penta‐ and hexa‐coordinated tin complexes [SnMe2Cl (ftpy)][SnMe2Cl3] ( 3a ) and [SnEt2Cl (ftpy)]Cl ( 3b ). The reaction of [SnMe2 (NCS)2] with ftpy afforded the hepta‐coordinated complex [SnMe2 (NCS)2(ftpy)] ( 4a ). The products were fully characterized using elemental analysis, and infrared, UV–visible, multinuclear (1H, 13C, 119Sn) NMR, DEPT‐135°, HH‐COSY and HSQC NMR spectroscopies. The crystal structure of complex 3a reveals that it contains the simultaneous presence of penta‐ and hexa‐coordinated tin (IV) atoms. Notably, the crystal structure of complex 4a shows that tin (IV) is hepta‐coordinated in a pentagonal bipyramidal geometry SnC2N5 by three nitrogen atoms of ftpy, two nitrogen atoms of NCS? and two Me groups with trans‐[SnMe2] configuration. These data indicate the influence of halide or pseudo‐halide group on the coordination number and geometry of tin. Hirshfeld surface analysis and two‐dimensional fingerprint plots were calculated for 3a and 4a which show the π–π interaction between molecules in the solid is relatively weak.  相似文献   

8.
Four new organotin(IV) complexes with 2-hydroxynaphthaldehyde-N(4)-ethylthiosemicarbazone [(H2DNET), (1)] of the type [MeSnCl(DNET] (2), [BuSnCl(DNET)] (3), [PhSnCl(DNET)] (4), and [Ph2Sn(DNET] (5) have been synthesized by the direct reaction of H2DNET (1) with organotin(IV) chloride(s) in the presence of potassium hydroxide in absolute methanol. All the compounds were characterized by elemental analyses, molar conductivity, UV-Vis, IR, 1H, 13C, and 119Sn NMR spectral studies. The molecular structure of ligand (1) has been confirmed by X-ray single crystal diffraction. Spectroscopic data clearly suggested that Sn(IV) center is coordinated with the ONS tridentate ligand (H2DNET) and exhibits a five-coordinate geometry in solution. Antibacterial studies were carried out in vitro against four bacterial strains. All organotin(IV) compounds (2–5) showed good activity against various bacteria but lower activity than the reference drug (Ciprofloxacin). The results demonstrate that organic groups attached to tin(IV) moiety have significant effect on their biological activities. Among them, diphenyltin(IV) derivative 5 exhibits significantly good activity than the other organotin(IV) derivatives (2–4).  相似文献   

9.
5,10,15,20‐Tetrakis[4‐(triorganostannyloxy)phenyl]porphyrins, (R3SnO)4TPP [2, R = Cy (a), Ph (b), PhC(CH3)2CH2 (c)], have been synthesized by the condensation of 4‐(triorganostannyloxy)benzaldehyde, 4‐(R3SnO)C6H4CHO (1), with pyrrole in the presence of BF3 followed by oxidation by p‐chloranil and characterized by means of elemental analysis, IR, UV–visible and NMR (1H, 13C and 119Sn) spectra. The results of X‐ray single‐crystal diffraction show that 1a and 1b possess a trans‐C3SnO2 trigonal bipyramidal geometry with the axial positions occupied by the phenolate oxygen and formyl group oxygen of an adjacent molecule and form a one‐dimensional zigzag chain. In 2a, the macrocyclic core of the porphyrin is coplanar and each tin atom possesses a distorted tetrahedral geometry. These compounds (1 and 2) have potent in vitro cytotoxic activity against two human tumor cell lines – CoLo205 and MCF‐7 – and the activity decreases in the order Ph > Cy > PhC(CH3)2CH2 for the R group bound to tin. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Five new diorganotin N‐[(3‐methoxy‐2‐oxyphenyl)methylene] tyrosinates, R2Sn[2‐O‐3‐MeOC6H3CH=NCH (CH2C6H4OH‐4)COO] (R = Me, 1 ; Et, 2 ; Bu, 3 ; Cy, 4 ; Ph, 5 ), have been synthesized and characterized by elemental analysis, IR, NMR (1H, 13C and 119Sn) spectra, and the X‐ray single crystal diffraction. In non‐coordinated solvent, complexes 1 – 5 have penta‐coordinated tin atom. In the solid state, 1 – 3 are centrosymmetric dimmers in which each tin atom is seven‐coordinated in a distorted pentagonal bipyramid, and 4 displays discrete molecular structure with distorted trigonal bipyramidal geometry, and the tin atom of 5 is hexa‐coordinated and possess the distorted octahedral geometry with a coordinational methanol molecule. The intermolecular O‐H???O hydrogen bonds in 1 – 4 link molecules into the different one‐dimensional supramolecular chain with R22 (30) or R22 (20) macrocycles, and the molecules of 5 are joined into a two‐dimensional supramolecular network containing R44 (24) and R44 (28) two macrocycles. Bioassay results against human tumour cell HeLa indicated that 3 ‐ 5 belonged to the efficient cytostatic agents and the activity decreased in the order 4 > 3 > 5 > 2 > 1. The fluorescence determinations show the complexes may be explored for potential luminescent materials.  相似文献   

11.
Tri‐ and di‐organotin(IV) compounds containing one or two 2‐(dimethylaminomethyl)phenyl‐ (LCN) groups as chelating ligands were prepared by reactions of lithium compound LCNLi with an appropriate amount of (organo)tin halide. The geometry of tin in 1 ((LCN)2SnPhCl) is on the boundary between octahedral and trigonal bipyramidal. The diorganotin compounds 2–4 ((LCN)2SnX2, where X = Cl, Br, I) have a distorted octahedral geometry in the solid state and show dynamic processes in solution with a lowering of activation energy of the dynamic process going from diiodide to dichloride derivative. Compound 5 (LCNSnPhCl2) has a trigonal bipyramidal structure with non‐equivalent chlorine atoms. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Diorganotin (IV) complexes SnR2X2 (R = Me, Ph; X = Cl, NCS) form a series of versatile complexes when react with bidentate substituted pyridyl ligands. The reaction of dimethyltin dichloride with 5,5′‐dimethyl‐2,2′‐bipyridine (5,5′‐Me2bpy) resulted in the formation of [SnMe2Cl2(5,5′‐Me2bpy)] ( 1 ). Moreover, the reaction of SnMe2(NSC)2 with 4,4′‐di‐tert‐butyl‐2,2′‐bipyridine (bu2bpy), 1,10‐phenanthroline (phen) and 4,7‐diphenyl‐1,10‐phenanthroline (bphen) affords the hexa‐coordinated complexes [SnMe2(NCS)2(bu2bpy)] ( 2 ), [SnMe2(NCS)2(phen)] ( 3 ) and [SnMe2(NCS)2(bphen)] ( 4 ), respectively. The resulting complexes have been characterized using elemental analysis, IR, multinuclear NMR (1H, 13C, 119Sn) and DEPT‐135° NMR spectroscopy. On the other hand, the reaction of diphenyltin dichloride with 2,2′‐biquinoline (biq) and 4,7‐phenantroline (4,7‐phen) led to the formation of polymeric complexes of [SnPh2Cl2(4,7‐phen)]n ( 5 ) and [SnPh2Cl2(biq)]n ( 6 ). The NMR spectra, however, reveal the ligand lability in solution and suggest a coordination number of 5 . The X‐ray crystal structures of complexes [SnMe2Cl2(5,5′‐Me2bpy)] ( 1 ), [SnMe2(NCS)2(bu2bpy)] ( 2 ) and [SnMe2(NCS)2(bphen)] ( 4 ) have been determined which reveal that the geometry around the tin atom is distorted octahedral with trans‐[SnMe2] configuration. Interestingly, the crystal structure of (H2biq)2[SnPh2Cl4]?2CHCl3 ( 7 ) was characterized by X‐ray crystallography from a chloroform solution of [SnPh2Cl2(biq)]n ( 6 ) indicating the formation of doubly protonated [H2biq]+ and [Ph2SnCl4]2? which are stabilized by a network of hydrogen bonds with a feature of trans‐[SnPh2]. The 3D Hirshfeld surface analysis and 2D fingerprint maps were used for quantitative mapping out of the intermolecular interactions for 1 , 2 , 4 and 7 which show the presence of π‐π and hydrogen bonding interactions which are associated between donor and acceptor atoms (N, S, Cl) in the solid state.  相似文献   

13.
14.
Seven diorganotin complexes with the Schiff bases derived from salicylaldehyde and l-tyrosine, R2Sn[2-O-5-XC6H3CH?=?NCH(CH2C6 H4OH-4)COO] (X?=?H (1), Br (2); R?=?Me (a), Et (b), Bu (c), Cy (cyclohexyl) (d)), were synthesized and characterized by elemental analysis, IR, 1H and 13C NMR spectra, and the single-crystal X-ray diffraction. In methanol, the racemization of chiral center of l-tyrosinate fragment occurred and the racemic products were obtained. X-ray analyses of 1c, 1d, and 2a2c showed that the tin atoms of the complexes exhibit distorted trigonal-bipyramidal geometries. In 1c, 1d, and 2c, the intermolecular O–H???O hydrogen bonds connected the molecules into 1-D supramolecular chain or a R22(20) macrocyclic dimer, and 2a and 2b formed the 2-D supramolecular network by the intermolecular Sn???O and O–H???O interactions. Bioassay results indicated that 1a, 1c, and 1d had moderate antibacterial activity against Escherichia coli and 1c, 1d, and 2c belonged to the efficient cytostatic agents against two human tumor cell lines (A549 and HeLa) and the activity tends to follow the order Cy > Bu?>?Et?>?Me for the R group attached to tin.  相似文献   

15.
16.
A heteroscorpionate ligand, potassium hydrobis(benzoato)(salicylaldehyde)borate (KL), has been synthesized. This was converted into organotin complexes R2SnL2 and R3SnL complexes by mixing and stirring with a methanolic solution/suspension of organotin chloride. The ligand and its complexes were characterized by elemental analyses and spectral studies (IR, 1H NMR, 13C NMR, ESI mass spectra and Thermo gravimetric analysis (TGA)). Antibacterial and antifungal studies of these compounds were evaluated by the disc diffusion method at variable concentration against three species of bacteria (Staphylococcus aureus, Klebsiella pneumonia and Bacillius subtillis) and two species of fungi (Asperjillius fiavus and Candida albicans). It was found that triorganotin derivatives (R3SnL) of the ligand were more effective as compared with diorganotin derivatives (R2SnL2). The organotin complexes of borates were tested for their algicidal activity on the cyanobacterial strains Aulosira fertilissma, Anabaena species, Anabaena variabilis and Nostoc muscorum and showed high to moderate toxicity towards the above species. The ligand and its complexes were also tested for its pH effect on soil in vitro for a duration of more than one month and it was found that they are able to kill pests without damaging the soil quality. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Diorganotin(IV) dichlorides of formula LCNRSnCl2 (where R is nBu or Ph) containing one LCN chelating ligand were hydrolyzed with aqueous sodium hydroxide in benzene. The composition of the products is strongly dependent on the amount of hydroxide. The partially hydrolyzed compounds of composition (LCNRSnCl)2(µ‐O) were isolated as crystalline products. A hydrolysis where more than one molar equivalent of NaOH is employed gave only a mixture of unidentifiable products. The structure of (LCNPhSnCl)2(µ‐O) was determined by X‐ray diffraction techniques in the solid state. In solution there was a mixture of diastereoisomers found, where the tin atoms serve as a stereogenic centers. The catalytic activity of starting dichlorides as well as (LCNPhSnCl)2(µ‐O) in various transesterification processes was investigated. The activity is very low in the case of starting dichlorides. When two molar equivalents of NaH are added or (LCNPhSnCl)2(µ‐O) is employed in the catalytic experiments, the activity is comparable to the literature data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Three new water-soluble organotin complexes R2Sn(5-BrSalGT)Cl [R = Ph, Me] and Ph2Sn(2-OHNaphGT)Cl have been synthesized by the reaction of R2SnCl2 (R = Ph or Me) with Schiff bases derived from condensation of Girard-T reagent with 5-bromosalicylaldehyde and 2-naphthaldehyde, (5-BrH2SalGT)Cl (1) and (2-OHH2NaphGT)Cl (2). The synthesized compounds have been investigated by elemental analysis, conductometric measurements, IR, 1H NMR, and 119Sn NMR spectroscopy. These data show that the deporotonated ligand is coordinated to Sn(IV) via ONO atoms and six-coordinate zwitterionic complexes are formed. The ligands and their complexes were investigated for their in vitro toxicity against Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. The results show remarkable antibacterial activity against the studied bacteria. All complexes exhibit more inhibitory effects than the parent ligand. The anticancer activity of all compounds were also performed on HN5 cell line and (2-OHH2NaphGT)Cl with concentration of 1 mg mL?1 was found to show higher anticancer activity than other compounds.  相似文献   

19.
Abstract

The reaction of Me2SnCl2 with dithizone or thiosemicarbazide produced two novel di-organotin derivatives in good yields, which were characterized by X-ray diffraction. The crystal structures show that the compounds present a distorted pentacoordinated tin(IV) metal center. The antimicrobial activity of the new compounds was studied against Gram-negative (Escherichia coli, Klebsiella pneumonia, Salmonella enteritidis) and Gram-positive (Staphylococcus aureus) bacteria, and the yeast Saccharomyces cerevisiae. It was observed that the coordination of tin metal has a pronounced effect on the microbial activities of the ligands. All the tin complexes have shown higher antimicrobial effect than the free ligands.

GRAPHICAL ABSTRACT  相似文献   

20.
[Zn(L)2] (1) and [(Ph)2Sn(L)(CH3COO)] (2), where HL = 2-benzoylpyridine N(4)-cyclohexylthiosemicarbazone, have been synthesized and characterized. The complexes show different coordination depending on their coordinating preferences. Biological studies carried out in vitro against human leukemia K562 cells show that the diorgantin(IV) complex, 2, has significant cytotoxicity with IC50 = 3.3 ± 0.5 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号