首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three new starburst DCM (4‐(dicyanomethylene)‐2‐methyl‐6‐[4‐(dimethylaminostyryl)‐4H‐pyran]) derivatives, 4,4′,4′′‐tris[2‐(4‐dicyanomethylene‐6‐t‐butyl‐4H‐pyran‐2‐yl)‐ethylene]triphenylamine (TDCM), 4,4′,′′‐tris[2‐(4‐(1′,3′‐indandione)‐6‐t‐butyl‐4H‐pyran‐2‐yl)‐ethylene]triphenylamine (TIN), and 4‐methoxy‐4′,4′′‐bis[2‐(4‐(1′,3′‐indandione)‐6‐t‐butyl‐4H‐pyran‐2‐yl)‐ethylene]triphenylamine (MBIN), have been designed and synthesized for application as red‐light emitters in organic light‐emitting diodes (OLEDs). Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) reveal their extremely high glass‐transition temperatures and decomposition temperatures, as well as their low tendency to crystallize. Photoluminescence and electroluminescence measurements show that they exhibit a greatly restricted concentration‐quenching effect compared to DCM1 (4‐(dicyanomethylene)‐2‐methyl‐6‐[p‐(N,N‐dimethylamino)‐styryl]‐4H‐pyran), a simple but typical DCM‐type dye, as a result of their non‐planar, three‐dimensional structures that result from their unique propeller‐like triphenylamine electron‐donating cores. The peripheral electron‐withdrawing moieties also play a key role in the restriction of concentration quenching. That is, TIN and MBIN, bearing 1,3‐indandione acceptors, emit more efficiently than TDCM and DCM1, which have dicyanomethylene as acceptors at a high doping concentration of 10 wt.‐% in poly(9‐vinylcarbazole) (PVK) film, irrespective of whether they are photoexcited or electroexcited, though their fluorescence quantum yields in dilute solutions are much lower than that of DCM1. By way of the co‐doping approach, the electroluminescence device with the configuration indium tin oxide (ITO)/PVK:MBIN(10 wt.‐%):tris(4‐(2‐phenylethynyl)‐phenyl)amine (TPA; 30 wt.‐%) (70 nm)/2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline (BCP; 20 nm)/tris(8‐quinolinolato) aluminum (Alq3;15 nm)/LiF (0.3 nm)/Al (150 nm) exhibits a turn‐on voltage of 5.1 V, a maximum luminance of 6971 cd m–2, a maximum efficiency of 6.14 cd A–1 (405 cd m–2), and chromaticity coordinates of (0.66,0.33). The encouraging electroluminescence performance suggests potential applications of the starburst DCM red‐light emitters in OLEDs.  相似文献   

2.
Two compounds, 2,3‐dicyano‐5,6‐di(4′‐diphenylamino‐biphenyl‐4‐yl)pyrazine (CAPP) and 6,7‐dicyano‐2,3‐di(4′‐diphenylamino‐biphenyl‐4‐yl)quinoxaline (CAPQ), capable of intramolecular charge transfer, have been designed and synthesized in high yield by a convenient procedure. The compounds have been fully characterized spectroscopically. They have a high thermal stability and show bright light emission both in non‐polar solvents and in the solid state. Moreover, they exhibit excellent reversible oxidation and reduction waves. The higher energy level of the highest occupied molecular orbital (–5.3 eV) and the triphenylamine group are advantageous for hole‐injection/transport. In addition, the high electron affinities of 3.4 eV and the observed reversible reductive process suggest that these compounds enhance electron injection and have potential for use in electron transport. Three types of non‐doped red‐light‐emitting diodes have been studied using CAPP and CAPQ as the electron‐transporting and host‐light‐emitting layers, respectively. The devices exhibit red electroluminescence (EL), and constant Commission Internationale de l'Eclairage coordinates have been observed on increasing the current density. Pure red EL of CAPP, with a maximum brightness of 536 cd m–2 and an external quantum efficiency of 0.7 % in ambient air, was achieved.  相似文献   

3.
We report a systematic comparison study of 3,5‐di(N‐carbazolyl)tetraphenylsilane (SimCP) and N,N′‐dicarbazolyl‐3,5‐benzene (mCP), which are used as the host materials for phosphorescent blue dopants in organic light‐emitting diodes (OLEDs). On the basis of photoexcitation emission spectroscopy, thermal stability analysis, photoelectron analysis, charge transport measurements, and molecular dynamics (MD) simulations, we conclude that the non‐π‐conjugated meta‐substituted triphenylsilyl moiety of SimCP exerts a unique hindering effect on the molecular packing characteristics in the condensed phase. The chemical origin of the superior performance of SimCP over mCP is revealed, and is expected to be helpful for the molecular design of effective host materials for enhancing the performance of blue phosphorescent OLEDs.  相似文献   

4.
Three blue‐light emitting dipyrenylbenzene derivatives, 1‐(4‐(1‐pyrenyl)phenyl)pyrene (PPP), 1‐(2,5‐dimethoxy‐4‐(1‐pyrenyl)phenyl)pyrene (DOPPP), and 1‐(2,5‐dimethyl‐4‐(1‐pyrenyl)phenyl)pyrene (DMPPP), have been prepared by the Suzuki coupling reaction of aryl dibromides with pyreneboronic acid in high yields. These compounds exhibit high glass‐transition temperatures of 97–137 °C and good film‐forming ability. As revealed from single‐crystal X‐ray analysis, these dipyrenylbenzenes adopt a twisted conformation with inter‐ring torsion angles of 44.5°–63.2° in the solid state. The twisted structure is responsible for the low degree of aggregation in the thin films that leads to fluorescence emission of the neat films at 446–463 nm, which is shorter than that of the typical pyrene excimer emission. The low degree of aggregation is also conducive for the observed high fluorescence quantum yields of 63–75%. In organic light‐emitting diode (OLED) applications, these dipyrenylbenzenes can be used as either the charge transporter or host emitter. The non‐doped blue OLEDs that employ these compounds as the emissive layer can achieve a very high external quantum efficiency (ηext) of 4.3–5.2%. In particular, the most efficient DMPPP‐based device can reach a maximum ηext of 5.2% and a very high luminescence of 40 400 cd m–2 in the deep‐blue region with Commission Internationale d'Énclairage (CIE) coordinates of (0.15, 0.11).  相似文献   

5.
To enhance the performance of organic devices, doping and graded mixed‐layer structures, formed by co‐evaporation methods, have been extensively adopted in the formation of organic thin films. Among the criteria for selecting materials systems, much attention has been paid to the materials' energy‐band structure and carrier‐transport behavior. As a result, some other important characteristics may have been overlooked, such as material compatibility or solubility. In this paper, we propose a new doping method utilizing fused organic solid solutions (FOSSs) which are prepared via high‐pressure and high‐temperature processing. By preparing fused solid solutions of organic compounds, the stable materials systems can be selected for device fabrication. Furthermore, by using these FOSSs, doping concentration and uniformity can be precisely controlled using only one thermal source. As an example of application in organic thin films, high‐performance organic light‐emitting diodes with both single‐color and white‐light emission have been prepared using this new method. Compared to the traditional co‐evaporation method, a FOSS provides us with a more convenient way to optimize the doping system and fabricate relatively complicated organic devices.  相似文献   

6.
Novel blue‐light‐emitting materials, 9,10‐bis(1,2‐diphenyl styryl)anthracene (BDSA) and 9,10‐bis(4′‐triphenylsilylphenyl)anthracene (BTSA), which are composed of an anthracene molecule as the main unit and a rigid and bulky 1,2‐diphenylstyryl or triphenylsilylphenyl side unit, have been designed and synthesized. Theoretical calculations on the three‐dimensional structures of BDSA and BTSA show that they have a non‐coplanar structure and inhibited intermolecular interactions, resulting in a high luminescence efficiency and good color purity. By incorporating these new, non‐doped, blue‐light‐emitting materials into a multilayer device structure, it is possible to achieve luminance efficiencies of 1.43 lm W–1 (3.0 cd A–1 at 6.6 V) for BDSA and 0.61 lm W–1 (1.3 cd A–1 at 6.7 V) for BTSA at 10 mA cm–2. The electroluminescence spectrum of the indium tin oxide (ITO)/copper phthalocyanine (CuPc)/1,4‐bis[(1‐naphthylphenyl)‐amino]biphenyl (α‐NPD)/BDSA/tris(9‐hydroxyquinolinato)aluminum (Alq3)/LiF/Al device shows a narrow emission band with a full width at half maximum (FWHM) of 55 nm and a λmax = 453 nm. The FWHM of the ITO/CuPc/α‐NPD/BTSA/Alq3/LiF/Al device is 53 nm, with a λmax = 436 nm. Regarding color, the devices showed highly pure blue emission ((x,y) = (0.15,0.09) for BTSA, (x,y) = (0.14,0.10) for BDSA) at 10 mA cm–2 in Commission Internationale de l'Eclairage (CIE) chromaticity coordinates.  相似文献   

7.
Four single polymers with two kinds of attachment of orange chromophore to blue polymer host for white electroluminescence (EL) were designed. The effect of the side‐chain attachment and main‐chain attachment on the EL efficiencies of the resulting polymers was compared. The side‐chain‐type single polymers are found to exhibit more efficient white EL than that of the main‐chain‐type single polymers. Based on the side‐chain‐type white single polymer with 4‐(4‐alkyloxy‐phenyl)‐7‐(4‐diphenylamino‐phenyl)‐2,1,3‐benzothiadiazoles as the orange‐dopant unit and polyfluorene as the blue polymer host, white EL with simultaneous orange (λmax = 545 nm) and blue emission (λmax = 432 nm/460 nm) is realised. A single‐layer device (indium tin oxide/poly(3,4‐ethylenedioxythiophene)/polymer/Ca/Al) made of these polymers emits white light with the Commission Internationale de l'Éclairage coordinates of (0.30,0.40), possesses a turn‐on voltage of 3.5 V, luminous efficiency of 10.66 cd A–1, power efficiency of 6.68 lm W–1, and a maximum brightness of 21 240 cd m–2.  相似文献   

8.
New single‐polymer electroluminescent systems containing two individual emission species—polyfluorenes as a blue host and 2,1,3‐benzothiadiazole derivative units as an orange dopant on the main chain—have been designed and synthesized. The resulting single polymers are found to have highly efficient white electroluminescence with simultaneous blue (λmax = 421 nm/445 nm) and orange emission (λmax = 564 nm) from the corresponding emitting species. The influence of the photoluminescence (PL) efficiencies of both the blue and orange species on the electroluminescence (EL) efficiencies of white polymer light‐emitting diodes (PLEDs) based on the single‐polymer systems has been investigated. The introduction of the highly efficient 4,7‐bis(4‐(N‐phenyl‐N‐(4‐methylphenyl)amino)phenyl)‐2,1,3‐benzothiadiazole unit to the main chain of polyfluorene provides significant improvement in EL efficiency. For a single‐layer device fabricated in air (indium tin oxide/poly(3,4‐ethylenedioxythiophene): poly(styrene sulfonic acid/polymer/Ca/Al), pure‐white electroluminescence with Commission Internationale de l'Eclairage (CIE) coordinates of (0.35,0.32), maximum brightness of 12 300 cd m–2, luminance efficiency of 7.30 cd A–1, and power efficiency of 3.34 lm W–1 can be obtained. This device is approximately two times more efficient than that utilizing a single polyfluorene containing 1,8‐naphthalimide moieties, and shows remarkable improvement over the corresponding blend systems in terms of efficiency and color stability. Thermal treatment of the single‐layer device before cathode deposition leads to the further improvement of the device performance, with CIE coordinates of (0.35,0.34), turn‐on voltage of 3.5 V, luminance efficiency of 8.99 cd A–1, power efficiency of 5.75 lm W–1, external quantum efficiency of 3.8 %, and maximum brightness of 12 680 cd m–2. This performance is roughly comparable to that of white organic light‐emitting diodes (WOLEDs) with multilayer device structures and complicated fabrication processes.  相似文献   

9.
Switching and control of efficient red, green, and blue active matrix organic light‐emitting devices (AMOLEDs) by printed organic thin‐film electrochemical transistors (OETs) are demonstrated. These all‐organic pixels are characterized by high luminance at low operating voltages and by extremely small transistor dimensions with respect to the OLED active area. A maximum brightness of ≈900 cd m?2 is achieved at diode supply voltages near 4 V and pixel selector (gate) voltages below 1 V. The ratio of OLED to OET area is greater than 100:1 and the pixels may be switched at rates up to 100 Hz. Essential to this demonstration are the use of a high capacitance electrolyte as the gate dielectric layer in the OETs, which affords extremely large transistor transconductances, and novel graded emissive layer (G‐EML) OLED architectures that exhibit low turn‐on voltages and high luminescence efficiency. Collectively, these results suggest that printed OETs, combined with efficient, low voltage OLEDs, could be employed in the fabrication of flexible full‐color AMOLED displays.  相似文献   

10.
Four monodisperse starburst oligomers bearing a 4,4′,4″‐tris(carbazol‐9‐yl)‐triphenylamine (TCTA) core and six oligofluorene arms are synthesized and characterized. The lengths of oligofluorene arms vary from one to four fluorene units, giving the starburst oligomers molecular weights ranging from 3072 to 10 068 Da (1 Da = 1.66 × 10–27 kg). All of the starburst oligomers have good film‐forming capabilities, and display bright, deep‐blue fluorescence (λmax = 395–416 nm) both in solution and in the solid state, with the quantum efficiencies of the films (ΦPL) varying between 27 and 88 %. Electrochemical studies demonstrate that these materials have large energy gaps, and are stable for both p‐doping and n‐doping processes. Electroluminescent devices are successfully fabricated using these materials as hole‐transporting emitters, and emit deep‐blue light. Devices with luminance values up to 1025 cd m–2 at 11 V and luminous efficiencies of 0.47 cd A–1 at 100 cd m–2 have been produced, which translates to an external quantum efficiency of 1.4 %. In addition, these large‐energy‐gap starburst oligomers are good host materials for red electrophosphorescence. The luminance of the red electrophosphorescent devices is as high as 4452 cd m–2, with a luminous efficiency of 4.31 cd A–1 at 15 mA cm–2: This value is much higher than those obtained from the commonly used hole‐transporting materials, such as poly(vinyl carbazole) (PVK) (1.10 cd A–1 at 16 mA cm–2).  相似文献   

11.
Novel fluorene‐based compounds, TCPC‐6 and TCPC‐4, with rigid central spirobifluorene cores and peripheral carbazole groups are synthesized using the Suzuki coupling reaction. The optical, electrochemical, and thermal properties of these compounds are characterized. The compounds show strong deep‐blue emission both in solution and as thin films. Both TCPC‐6 and TCPC‐4 exhibit amorphous morphologies in the solid state with high glass transition temperatures (Tg) of 108 and 143 °C, respectively. Atomic force microscopy (AFM) measurements indicate that high‐quality amorphous films of these novel compounds can be prepared by spin‐coating. The oxidation potentials of TCPC‐6 and TCPC‐4 are significant lower than that of model compounds without peripheral carbazole groups, which suggests that these compounds have relatively high highest occupied molecular orbital (HOMO) energy levels and better hole‐injection capabilities. Light‐emitting devices fabricated by spin‐coating films of these molecules exhibit deep‐blue emission with Commission Internationale de l'Eclairage (CIE) chromaticity coordinates (x, y) of (0.16, 0.05); the devices fabricated using spin‐coated TCPC‐6 and TCPC‐4 layers exhibit high luminance efficiencies of 1.35 and 0.90 cd A–1 (with external quantum efficiencies of 3.72 and 2.47 %), respectively.  相似文献   

12.
New single‐polymer electroluminescent systems containing two individual emission species—polyfluorenes as a blue host and 2,1,3‐benzothiadiazole derivative units as an orange dopant on the main chain—have been designed and synthesized by Wang and co‐workers on p. 957. The resulting single polymers are found to have highly efficient white electroluminescence with simultaneous blue and orange emission from the corresponding emitting species. A single‐layer device has been fabricated that has performance characteristics roughly comparable to those of organic white‐light‐emitting diodes with multilayer device structures. New single‐polymer electroluminescent systems containing two individual emission species—polyfluorenes as a blue host and 2,1,3‐benzothiadiazole derivative units as an orange dopant on the main chain—have been designed and synthesized. The resulting single polymers are found to have highly efficient white electroluminescence with simultaneous blue (λmax = 421 nm/445 nm) and orange emission (λmax = 564 nm) from the corresponding emitting species. The influence of the photoluminescence (PL) efficiencies of both the blue and orange species on the electroluminescence (EL) efficiencies of white polymer light‐emitting diodes (PLEDs) based on the single‐polymer systems has been investigated. The introduction of the highly efficient 4,7‐bis(4‐(N‐phenyl‐N‐(4‐methylphenyl)amino)phenyl)‐2,1,3‐benzothiadiazole unit to the main chain of polyfluorene provides significant improvement in EL efficiency. For a single‐layer device fabricated in air (indium tin oxide/poly(3,4‐ethylenedioxythiophene): poly(styrene sulfonic acid/polymer/Ca/Al), pure‐white electroluminescence with Commission Internationale de l'Eclairage (CIE) coordinates of (0.35,0.32), maximum brightness of 12 300 cd m–2, luminance efficiency of 7.30 cd A–1, and power efficiency of 3.34 lm W–1 can be obtained. This device is approximately two times more efficient than that utilizing a single polyfluorene containing 1,8‐naphthalimide moieties, and shows remarkable improvement over the corresponding blend systems in terms of efficiency and color stability. Thermal treatment of the single‐layer device before cathode deposition leads to the further improvement of the device performance, with CIE coordinates of (0.35,0.34), turn‐on voltage of 3.5 V, luminance efficiency of 8.99 cd A–1, power efficiency of 5.75 lm W–1, external quantum efficiency of 3.8 %, and maximum brightness of 12 680 cd m–2. This performance is roughly comparable to that of white organic light‐emitting diodes (WOLEDs) with multilayer device structures and complicated fabrication processes.  相似文献   

13.
Ir(III) metal complexes with formula [(nazo)2Ir(Fppz)] ( 1 ), [(nazo)2Ir(Bppz)] ( 2 ), and [(nazo)2Ir(Fptz)] ( 3 ) [(nazo)H = 4‐phenyl quinazoline, (Fppz)H = 3‐trifluoromethyl‐5‐(2‐pyridyl) pyrazole, (Bppz)H = 3‐t‐butyl‐5‐(2‐pyridyl) pyrazole, and (Fptz)H = 3‐trifluoromethyl‐5‐(2‐pyridyl) triazole] were synthesized, among which the exact configuration of 1 was confirmed using single‐crystal X‐ray diffraction analysis. These complexes exhibited bright red phosphorescence with relatively short lifetimes of 0.4–1.05 μs in both solution and the solid‐state at room temperature. Non‐doped organic light‐emitting diodes (OLEDs) were fabricated using complexes 1 and 2 in the absence of a host matrix. Saturated red electroluminescence was observed at λmax = 626 nm (host‐emitter complex 1 ) and 652 nm (host‐emitter complex 2 ), which corresponds to coordinates (0.66,0.34) and (0.69,0.31), respectively, on the 1931 Commission Internationale de l'Eclairage (CIE) chromaticity diagram. The non‐doped devices employing complex 1 showed electroluminance as high as 5780 cd m–2, an external quantum efficiency of 5.5 % at 8 V, and a current density of 20 mA cm–2. The short phosphorescence lifetime of 1 in the solid state, coupled with its modest π–π stacking interactions, appear to be the determining factors for its unusual success as a non‐doped host‐emitter.  相似文献   

14.
The present work investigates the influence of the n‐type layer in the connecting unit on the performance of tandem organic light‐emitting devices (OLEDs). The n‐type layer is typically an organic electron‐transporting layer doped with reactive metals. By systematically varying the metal dopants and the electron‐transporting hosts, we have identified the important factors affecting the performance of the tandem OLEDs. Contrary to common belief, device characteristics were found to be insensitive to metal work functions, as supported by the ultraviolet photoemission spectroscopy results that the lowest unoccupied molecular orbitals of all metal‐doped n‐type layers studied here have similar energy levels. It suggests that the electron injection barriers from the connecting units are not sensitive to the metal dopant used. On the other hand, it was found that performance of the n‐type layers depends on their electrical conductivities which can be improved by using an electron‐transporting host with higher electron mobility. This effect is further modulated by the optical transparency of constituent organic layers. The efficiency of tandem OLEDs would decrease as the optical transmittance decreases.  相似文献   

15.
A novel blue‐emitting material, 2‐tert‐butyl‐9,10‐bis[4‐(1,2,2‐triphenylvinyl)phenyl]anthracene ( TPVAn ), which contains an anthracene core and two tetraphenylethylene end‐capped groups, has been synthesized and characterized. Owing to the presence of its sterically congested terminal groups, TPVAn possesses a high glass transition temperature (155 °C) and is morphologically stable. Organic light‐emitting diodes (OLEDs) utilizing TPVAn as the emitter exhibit bright saturated‐blue emissions (Commission Internationale de L'Eclairage (CIE) chromaticity coordinates of x = 0.14 and y = 0.12) with efficiencies as high as 5.3 % (5.3 cd A–1)—the best performance of non‐doped deep blue‐emitting OLEDs reported to date. In addition, TPVAn doped with an orange fluorophore served as an authentic host for the construction of a white‐light‐emitting device that displayed promising electroluminescent characteristics: the maximum external quantum efficiency reached 4.9 % (13.1 cd A–1) with CIE coordinates located at (0.33, 0.39).  相似文献   

16.
A new series of highly efficient red‐emitting phosphorescent Ir(III) complexes, (Et‐CVz‐PhQ)2Ir(pic‐N‐O), (Et‐CVz‐PhQ)2Ir(pic), (Et‐CVz‐PhQ)2Ir(acac), (EO‐CVz‐PhQ)2Ir(pic‐N‐O), (EO‐CVz‐PhQ)2Ir(pic), and (EO‐CVz‐PhQ)2Ir(acac), based on carbazole (CVz)‐phenylquinoline (PhQ) main ligands and picolinic acid N‐oxide (pic‐N‐O), picolinic acid (pic), and acetylacetone (acac) ancillary ligands, are synthesized for phosphorescent organic light‐emitting diodes (PhOLEDs), and their photophysical, electrochemical, and electroluminescent (EL) properties are investigated. All of the Ir(III) complexes have high thermal stability and emit an intense red light with an excellent color purity at CIE coordinates of (0.65,0.34). Remarkably, high‐performance solution‐processable PhOLEDs were fabricated using Ir(III) complexes with a pic‐N‐O ancillary ligand with a maximum external quantum efficiency (5.53%) and luminance efficiency (8.89 cd A?1). The novel use of pic‐N‐O ancillary ligand in the synthesis of phosphorescent materials is reported. The performance of PhOLEDs using these Ir(III) complexes correlates well with the results of density functional theory calculations.  相似文献   

17.
An enhancement in the external quantum efficiency (QE) of red phosphorescent organic light‐emitting devices (OLEDs) by using facially encumbered and bulky meso‐aryl substituted PtII porphyrin complexes is demonstrated. The maximum external QEs of phosphorescent OLEDs doped with the facially non‐encumbered PtII porphyrin complex 1 [5,15‐bis[4‐(4,4‐dimethyl‐2,6‐dioxacyclohexyl)phenyl]‐2,8,12,18‐tetrahexyl‐3,7,13,17‐tetramethylporphyrin platinum(II )], the facially encumbered PtII porphyrin complex 2 [5,15‐bis(2,6‐dimethoxyphenyl)‐2,8,12,18‐tetrahexyl‐3,7,13,17‐tetramethylporphyrinato platinum(II )], the PtII porphyrin complex 3 that bears bulkier 3,5‐di‐tert‐butylphenyl substituents [5,15‐bis(3,5‐di‐t‐butylphenyl)‐2,8,12,18‐tetrahexyl‐3,7,13,17‐tetramethylporphyrin platinum(II )], and the “doubly‐decamethylene‐strapped” PtII porphyrin complex 4 were 1, 4.2, 7.3, and 8.2 %, respectively. The trend of increasing QE values in the order of 1 < 2 < 3 < 4 may be related to facial encumbrance and steric bulkiness of meso‐aryl substituted PtII porphyrin complexes. Especially, in the case of the PtII porphyrin 4 , it is considered that the “double straps” play an important role in restricting rotational freedom of the meso‐aryl substituents. The triplet excited‐state lifetimes for PtII porphyrins 1 – 4 in OLEDs at an injection current density of 0.55 mA cm–2 were 80, 103, 140, and 152 μs, respectively. We believe that the trend of increasing triplet lifetime in going from 1 to 4 is correlated with suppressing non‐radiative decay.  相似文献   

18.
A series of terdentate cyclometallated PtII complexes with remarkable luminescence properties are used as new phosphorescence‐emitting dopants in a blended host matrix as the emitting layer, resulting in very high electroluminescence efficiencies. Because of the high phosphorescence quantum yields of these Pt complexes and the efficient energy transfer from both singlet and triplet excited states of the host to the emitting guest, external electroluminescence quantum efficiencies as high as 4–16 % photons per carrier and luminous efficiencies of 15–40 cd A–1 are achieved. Moreover, these high efficiency values were maintained over a four‐decade current intensity span with no significant roll‐off. Tuning of the electroluminescence spectra from the yellow to the green‐bluish region of the chromaticity diagram is obtained simply by changing the substituents at the central 5‐position of the cyclometallating ligand.  相似文献   

19.
20.
A new approach to forming a gradient hole‐injection layer in polymer light‐emitting diodes (PLEDs) is demonstrated. Single spin‐coating of hole‐injecting conducting polymer compositions with a perfluorinated ionomer results in a work function gradient through the layer formed by self‐organization, which leads to remarkably efficient single‐layer PLEDs (ca. 21 cd A–1). The device lifetime is significantly improved (ca. 50 times) compared with the conventional hole‐injection layer, poly(3,4‐ethylenedioxythiophene)/poly(styrene sulfonate). These results are a good example for demonstrating that the shorter lifetime of PLEDs compared with small‐molecule‐based organic LEDs (SM‐OLEDs) is not mainly due to the inherent degradation of the polymeric emitter itself. Hence, the results open the way to further improvements of PLEDs for real applications to large‐area, high‐resolution, and full‐color flexible displays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号