首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A series of Zn (II), Pd (II) and Cd (II) complexes, [(L) n MX 2 ] m (L = L‐a–L‐c; M = Zn, Pd; X = Cl; M = Cd; X = Br; n, m = 1 or 2), containing 4‐methoxy‐N‐(pyridin‐2‐ylmethylene) aniline ( L‐a ), 4‐methoxy‐N‐(pyridin‐2‐ylmethyl) aniline ( L‐b ) and 4‐methoxy‐N‐methyl‐N‐(pyridin‐2‐ylmethyl) aniline ( L‐c ) have been synthesized and characterized. The X‐ray crystal structures of Pd (II) complexes [L 1 PdCl 2 ] (L = L‐b and L‐c) revealed distorted square planar geometries obtained via coordinative interaction of the nitrogen atoms of pyridine and amine moieties and two chloro ligands. The geometry around Zn (II) center in [(L‐a)ZnCl 2 ] and [(L‐c)ZnCl 2 ] can be best described as distorted tetrahedral, whereas [(L‐b) 2 ZnCl 2 ] and [(L‐b) 2 CdBr 2 ] achieved 6‐coordinated octahedral geometries around Zn and Cd centers through 2‐equivalent ligands, respectively. In addition, a dimeric [(L‐c)Cd(μ ‐ Br)Br] 2 complex exhibited typical 5‐coordinated trigonal bipyramidal geometry around Cd center. The polymerization of methyl methacrylate in the presence of modified methylaluminoxane was evaluated by all the synthesized complexes at 60°C. Among these complexes, [(L‐b)PdCl 2 ] showed the highest catalytic activity [3.80 × 104 g poly (methyl methacrylate) (PMMA)/mol Pd hr?1], yielding high molecular weight (9.12 × 105 g mol?1) PMMA. Syndio‐enriched PMMA (characterized using 1H‐NMR spectroscopy) of about 0.68 was obtained with Tg in the range 120–128°C. Unlike imine and amine moieties, the introduction of N‐methyl moiety has an adverse effect on the catalytic activity, but the syndiotacticity remained unaffected.  相似文献   

2.
Synthesis and Crystal Structure of the Complexes [(n‐Bu)4N]2[{(THF)Cl4Re≡N}2PdCl2], [Ph4P]2[(THF)Cl4Re≡N‐PdCl(μ‐Cl)]2 and [(n‐Bu)4N]2[Pd3Cl8] The threenuclear complex [(n‐Bu)4N]2[{(THF)Cl4Re≡N}2 PdCl2] ( 1 ) is obtained in THF by the reaction of PdCl2(NCC6H5)2 with [(n‐Bu)4N][ReNCl4] in the molar ration 1:2. It forms orange crystals with the composition 1· THF crystallizing in the monoclinic space group C2/c with a = 2973.3(2); b = 1486.63(7); c = 1662.67(8)pm; β = 120.036(5)° and Z = 4. If the reaction is carried out with PdCl2 instead of PdCl2(NCC6H5)2, orange crystals of hitherto unknown [(n‐Bu)4N]2[Pd3Cl8] ( 3 ) are obtained besides some crystals of 1· THF. 3 crystallizes with the space group P1¯ and a = 1141.50(8), b = 1401.2(1), c = 1665.9(1)pm, α = 67.529(8)°, β = 81.960(9)°, γ = 66.813(8)° and Z = 2. In the centrosymmetric complex anion [{(THF)Cl4Re≡N}2PdCl2]2— a linear PdCl2 moiety is connected in trans arrangement with two complex fragments [(THF)Cl4Re≡N] via asymmetric nitrido bridges Re≡N‐Pd. For Pd(II) thereby results a square‐planar coordination PdCl2N2. The linear nitrido bridges are characterized by distances Re‐N = 163.8(7)pm and Pd‐N = 194.1(7)pm. The crystal structure of 3 contains two symmetry independent, planar complexes [Pd3Cl8]2— with the symmetry 1¯, in which the Pd atoms are connected by slightly asymmetric chloro bridges. By the reaction of equimolar amounts of [Ph4P][ReNCl4] and PdCl2(NCC6H5)2 in THF brown crystals of the heterometallic complex, [Ph4P]2[(THF)Cl4Re≡N‐PdCl(μ‐Cl)]2 ( 2 ) result. 2 crystallizes in the monoclinic space group P21/n with a = 979.55(9); b = 2221.5(1); c = 1523.1(2)pm; β = 100.33(1)° and Z = 2. In the central unit ClPd(μ‐Cl)2PdCl of the centrosymmetric anionic complex [(THF)Cl4Re≡N‐PdCl(μ‐Cl)]22— the coordination of the Pd atoms is completed by two nitrido bridges Re≡N‐Pd to nitrido complex fragments [(THF)Cl4Re≡N] forming a square‐planar arrangement for Pd(II). The distances in the linear nitrido bridges are Re‐N = 163.8(9)pm and Pd‐N = 191.5(9)pm.  相似文献   

3.
The treatment of chlorido[bis(4‐methylthiazolyl)isoindoline]palladium(II) [(4‐Mebti)PdCl] with sodium tetrakis[bis‐3,5(trifluoromethyl)phenyl]boranate Na[BArF] in the absence of donor ligands or solvents results in the exclusive formation of the dinuclear cationic complex [{(4‐Mebti)Pd}2Cl]+ independent of the stoichiometry of the reactants. The new compound crystallizes either in the space group or in C2/c depending on the amount of co‐crystallized solvent. In both cases, the molecular structure of the dinuclear cation reveals a sterically crowded situation with the Pd2+ ion bound in a non‐planar coordination environment. In solution, [{(4‐Mebti)Pd}2Cl]+ reacts with acetonitrile to form the neutral [(4‐Mebti)PdCl] and an equilibrium mixture of different complexes, from which the mononuclear species [(4‐Mebti)Pd(NCCH3)]+ can be isolated as the pure BArF derivative.  相似文献   

4.
The structure of trans-[Pd(dtco-3-OH)2] (ClO4)2·2DMSO, in which dtco-3-OH is dithiacyclooctan-3-ol and DMSO is dimethyl sulfoxide, was determined by X-ray crystallographic analysis. The crystal data: space group pi, a = 0.7077(2) nm, b = 1.0788(1) nm, c = 1.1111(1) nm, α=67.710(8)°, β = 73. 59(2)°, γ = 85. 39(2)°,R1 = 0 . 0368 and Rw = 0.0998. The palladium (II) is coordinated by four sulfur atoms with a regular square planar configuration. The Pd-S distances are 0.2314(1) and 0.2317(1) nm, respectively. Both dtco-3-OH ligands are in the boat-chair configuration and two hydroxyl groups are on the opposite sites of the PdS4 coordination plane and are towards Pd(II). The Pd-O distance is 0. 285 nm, indicating a weak interaction between them. A typical hydrogen bond between the hydroxyl group of dtco-3-OH ligand and DMSO was observed in the crystal structure. An aqueous solution prepared with the crystals of the complex was used for the investigation of electrospray mass spectrometry ( ESMS ). Besid  相似文献   

5.
The reaction of [Pd(CH3CN)2Cl2] with N ‐functional group‐substituted 2‐iminomethylpyrrole‐based ligands, namely N 1‐((1H‐pyrrol‐2‐yl)methylene)‐N 3,N 3‐dimethylpropane‐1,3‐diamine (LA), N 1‐((1H‐pyrrol‐2‐yl)methylene)‐N 3‐methyl‐N 3‐phenylpropane‐1,3‐diamine (LB), N ‐((1H‐pyrrol‐2‐yl)methylene)‐3‐(methylthio)propan‐1‐amine (LC) and N ‐((1H‐pyrrol‐2‐yl)methylene)‐3‐methoxypropan‐1‐amine (LD), resulted in [Ln PdCl] (Ln  = LA–LD) complexes in high yield via N─H bond activation of pyrrole moiety without use of base. [Ln PdCl] existed as monomeric four‐coordinated complexes with slightly distorted square planar geometries around the palladium metal center. The ligands show N ,N ′,X ‐tridentate binding mode to the palladium metal center to give two fused ring metallacycles. [LBPdCl] gave the highest activity (3.29 × 105 g PMMA (mol Pd)−1 h−1) for a methyl methacrylate (MMA) polymerization in the presence of modified methylaluminoxane at 60 °C compared to the other Pd(II) analogues, and resulted in PMMA with higher molecular weight (M w = 7.16 × 105 g mol−1) and narrower polydispersity index. Syndiotactic‐enriched PMMA resulted in all cases.  相似文献   

6.
Deprotonation of the aminophosphanes Ph2PN(H)R 1a – 1h [R = tBu ( 1a ), 1‐adamantyl ( 1b ), iPr ( 1c ), CPh3 ( 1d ), Ph ( 1e ), 2,4,6‐Me3C6H2 (Mes) ( 1f ), 2,4,6‐tBu3C6H2 (Mes*) ( 1g ), 2,6‐iPr2C6H3 (DIPP) ( 1h )], followed by reactions of the phosphanylamide salts Li[Ph2PNR] 2a , 2b , 2g , and 2h with the P‐chlorophosphaalkene (Me3Si)2C=PCl, and of 2a – 2g with (iPrMe2Si)2C=PCl, gave the isolable P‐phosphanylamino phosphaalkenes (Me3Si)2C=PN(R)PPh2 3a , 3b , 3g , and (iPrMe2Si)2C=PN(R)PPh2 4a – 4g . 31P NMR spectra, supported by X‐ray structure determinations, reveal that in compounds 2a , 2b , 3a , and 3b , with bulky N‐alkyl groups the Si2C=P–N–P skeleton is non‐planar (orthogonal conformation), whereas 3g , 3h , and 4g with bulky N‐aryl groups exhibit planar conformations of the Si2C=P–N–P skeleton. Solid 3g and 4g exhibit cisoid orientation of the planar C=P–N–C units (planar I) but in solid 3h the transoid rotamer is present (planar II). From 3g , 4d , and 4g mixtures of rotamers were detected in solution by pairs of 31P NMR patterns ( 3h : line broadening).  相似文献   

7.
Pd(II) complexes with organophosphines and dithiocarbamates derivatives of α‐amino acids were synthesized by reacting N,N‐dicyclohexyldithiocarbamate (DCHDTC, compounds 1 – 3 ) and N‐methylcyclohexyldithiocarbamate (MCHDTC, compounds 4 – 6 ) with (R3P)2PdCl2 (R = Ph, o‐tolyl, Ph2Cl) in a 1:1 molar ratio. The complexes were characterized by elemental analyses, FT‐IR, multinuclear (1H, 13C and 31P) NMR and single X‐ray crystallography, showing that the dithiocarbamate acts as a bidentate ligand and binds to Pd(II) via two sulfur atoms, resulting in a square planar geometry around Pd(II). The cytotoxicity of compounds 2, 3 and 4 was determined in vitro against six human tumour cell lines, MCF7, EVSA‐T, WIDR, IGROV, M19 MEL, A498 and H226. Compounds 3 and 4 showed a moderate to low cytotoxicity, whereas compound 2 exhibited a very low cytotoxicity. The results of antifungal assays showed that compounds 1 – 6 possess antifungal activity against Fusarium moniliformes, Fusarium saolani, Mucor sp., Aspergillus niger and Aspergillus fumigatus. The anti‐inflammatory screening results of 1–6 are quite similar to those observed for the standard drug Declofenac at 10 mg kg?1, which inhibited the odema by 74% after 4 h. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Metal Complexes of Biologically Important Ligands. CXXVI. Palladium(II) and Platinum(II) Complexes with the Antimalarial Drug Mefloquine as Ligand The coordination sites of the antimalarial drug mefloquine (L) were studied. Reactions of the chloro bridged complexes (allyl)Pd(μ‐Cl)2Pd(allyl) and (R3P)(Cl)M(μ‐Cl)2M(Cl)(PR3) (M = Pd, Pt) with racemic mefloquine give the compounds (allyl)(Cl)Pd(L) ( 1 ), Cl2(Et3P)Pt(L) ( 2 ) and Cl2(Et3P)Pd(L) ( 3 ) with coordination of the piperidine N atom of mefloquine. In the presence of NaOMe the N,O‐chelate complexes Cl(Et3P)Pt(L–H+) ( 4 ) and Cl(R3P)Pd(L–H+) ( 5 , 6 , R = Et, nBu) were obtained. Protection of the piperidine N atom of mefloquine by protonation allows the synthesis of the complexes Cl2(Et3P)Pt(L + H+) ( 7 ) in which mefloquine is coordinated via the quinoline N atom. The structures of 2 , 3 and 4 were determined by X‐ray diffraction analysis. In the crystal of 4 pairs of enantiomers are found which are linked by two hydrogen bridges between the amine group and the chloro ligand.  相似文献   

9.
Palladium(II) and platinum(II) complexes containing mixed ligands N-(2-pyridyl)acetamide (AH) or N-(2-pyrimidyl)acetamide (BH) and the diphosphines Ph2P(CH2) n PPh2, (n = 1, 2 or 3) have been prepared. The prepared complexes [Pd(A)2(diphos)] or [Pd(B)2(diphos)] have been used effectively to prepare bimetallic complexes of the type [(diphos)Pd(μ-L)2M′Cl2] where M′ = Co, Cu, Mn, Ni, Pd, Pt or SnCl2; L = A or B. The prepared complexes were characterized by elemental analysis magnetic susceptibility, i.r. and UV–Vis spectral data. 31P–{1H}-n.m.r. data have been applied to characterize the produced linkage isomers.  相似文献   

10.
手性高分子P–1由(R)-5,5′-二溴-6,6′-二(4-三氟甲基苯基)-2,2′-二正辛氧基-1,1′-联萘(R–M–1)和5,5′-二乙烯基-2,2′-联吡啶(M–2)通过Pd催化的Heck偶合反应合成得到,高分子配合物P-2和P-3由高分子P-1与Eu(TTA)3·2H2O和Gd(TTA)3·2H2O (TTA– = 2-噻吩甲酰三氟丙酮)反应生成。手性高分子P-1能发射强的蓝色荧光,这是由于手性重复单元(R)-6,6′-二(4-三氟甲基苯基)-2,2′-二正辛氧基-1,1′-联萘和单元2,2′-联吡啶通过亚乙烯基桥连形成共轭高分子结构造成的。在不同的激发波长激发下,含Eu(III)的高分子配合物P–2不仅显示高分子荧光,还可显示Eu(III) (5D0→7F2)特征荧光。含Gd(III)的高分子配合物P–3仅发射高分子荧光。基于高分子及含RE(III)的高分子配合物的荧光性质研究发现,共轭高分子并没有把能量转移到Eu(III)或Gd(III) 配合物部分,只发射它自身的荧光,含Eu(III)的高分子配合物P–2发射Eu(III) (5D0→7F2)特征荧光能量主要来源于配阴离子TTA–。  相似文献   

11.
Organometallic Compounds with N -substituted 3-Hydroxy-2-methyl-4-pyridone Ligands: square planar Rhodium(I), Iridium(I), and Palladium(II) Complexes Reactions of [(OC)2MCl]2 (M = Rh, Ir) or [(cod)RhCl]2 with the anions of N-Aryl or N-Alkyl substituted 3-hydroxy-2-methyl-4-pyridones (O–O′) yield complexes of the general formula [L2M(O–O′)]. Compounds of this type are also available from reactions of [(OC)2Rh(acac)] with the corresponding neutral ligands. Substitution of one carbonyl-ligand of the N-phenyl complex [(OC)2Rh(C12H10NO2)] ( 2 ) with cyclooctene affords [(OC)(C8H14)Rh(C12H10NO2)] ( 8 ). The palladium complexes [(R3P)Pd(O–O′)Cl] (R = Et, Bu), [(C6H4CH2NMe2) · Pd(O–O′)] and [(Et3P)2Pd(O–O′)]BF4 ( 9 – 12 ) were synthesized from [(R3P)PdCl2]2, [(C6H4CH2NMe2)PdCl]2 or [(Et3P)PdCl2]. The structures of the N-methyl compounds [(OC)2Rh(C7H8NO2)] ( 1 ) and [(Ph3P)Pd(C7H8NO2)Cl] ( 9 ) were determined by single crystal X-ray diffraction.  相似文献   

12.
Metallacyclic palladium(II) complexes [Pd(L)(R3P)Cl], L = TIQDTC (1,2,3,4-tetrahydroisoquinolinedithiocarbamate), 4MpipDTC (4-methylpipradinedithiocarbamate), MPizDTC (N-methylpiperazinedithiocarbamate), R3P = Ph3P, (o-tolyl)3P, Ph2ClP, were synthesized in a 1:1 molar metal-ligand ratio. These complexes were characterized by elemental analyses, FT-IR, multinuclear (1H, 13C and 31P) NMR. The X-ray crystal structures of [Pd(TIQDTC)(Ph3P)Cl] and [Pd(TIQDTC)((o-tolyl)3P)Cl] show a slightly distorted square planar environment around the Pd(II) ion with S-Pd-S and P-Pd-Cl average bond angles of 74.51 and 92.41, respectively. These complexes were screened for cytotoxic, antifungal, anti-inflammatory and antibacterial activity. Some complexes exhibit a significant activity against fungi.  相似文献   

13.
The phosphorus‐sulfur ligand 1‐(methylthio)‐3‐(diphenylphosphino)‐propane (S‐P3) has been synthesized and characterized by 1H NMR and 13C NMR. Reactions of S‐P3 with [PdCl2(PhCN)2] afforded the complexes [PdCl2(S‐P3)] ( I ) and [PdCl2(S‐P3)2] ( II ), in which S‐P3 acts as a bidentate and monodentate ligand, respectively. Compound I crystallizes in monoclinic space group P21/n (No. 14) with cell dimensions: a = 8.589(3), b = 15.051(3), c = 17.100(3)Å, β = 102.91(2)°, V = 2154.7(9)Å3, Z = 4. Likewise, compound II crystallizes in monoclinic space group P21/n (No. 14) with a = 9.993(5), b = 8.613(4), c = 18.721(5)Å, β = 90.18(3)°, V = 1611.3(12)Å3, Z = 2. Compound II has a trans square planar configuration with only the P‐site of the ligand bonded to the palladium atom.  相似文献   

14.
tBu2P–PLi–PtBu2 · 2THF reacts with [(R3P)2MCl2] (M = Pt, Pd, Ni; R3P = Et3P, pTol3P, Ph2EtP, iPr3P) to yield isomers of [(1,2‐η‐tBu2P=P–PtBu2)M(PR3)Cl], in which the tBu2P–P–PtBu2 ligand adopts the arrangement of a side‐on bonded 1,1‐di‐tert‐butyl‐2‐(di‐tert‐butylphosphanyl)diphosphenium cation. tBu2P–PLi–P(NEt2)2 · 2THF reacts with [(R3P)2MCl2] but does not form complexes with a tBu2P–P–P(NEt2)2 moiety, however, splitting of a P–P(NEt2)2 bond of the parent triphosphane takes place.  相似文献   

15.
[PdCl(TeMe2)3]BArF ( 4 ) forms as the major tellurium containing product from the reaction of [(4‐Mebti)PdCl] with TeMe2 and Na(BArF) and is isolated by crystallization from the reaction mixture. At ?20 °C, the compound forms orange columns from toluene/pentane, space group , with Z = 2. In the solid, the cationic [PdCl(TeMe2)3]+ complex ions show a non‐planar PdClTe3 coordination unit and are associated to dimers via weak Pd···Te interactions.  相似文献   

16.
The reaction of N‐methylimidazole (N‐MeIm) and N‐butylimidazole (N‐BuIm) with the complexes [PdCl2(PPh2py–P,N)] and [PdCl2(PPh2Etpy–P,N)] in the presence of NH4PF6 under N2 at room temperature afforded four new cationic Pd(II) complexes [PdCl(PPh2py–P,N)(N‐MeIm)](PF6) ( 1 ), [PdCl(PPh2py–P,N)(N‐BuIm)](PF6) ( 2 ), [PdCl(PPh2Etpy–P,N)(N‐MeIm)](PF6) ( 4 ) and [PdCl(PPh2Etpy‐P,N)(N‐BuIm)](PF6) ( 5 ) in good yields, where PPh2py is 2‐(diphenylphosphino)pyridine and PPh2Etpy is 2‐{2‐(diphenylphosphino)ethyl}pyridine). The complexes were fully characterized. The catalytic activities of these complexes were investigated for Suzuki–Miyaura cross‐coupling reactions at room temperature. Complex 2 exhibited excellent activity compared to other analogs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
In the title complex, [Pd(C12H8FN4O2)2(C5H5N)2] or trans‐[Pd(FC6H4N=N—NC6H4NO2)(C5H5N)2], the Pd atom lies on a centre of inversion in space group P. The coordination geometry about the Pd2+ ion is square planar, with two deprotonated 3‐(2‐fluoro­phenyl)‐1‐(4‐nitro­phenyl)­triazenide ions, FC6H4N=N—NC6H4NO2?, acting as monodentate ligands (two‐electron donors), while two neutral pyridine mol­ecules complete the metal coordination sphere. The whole triazenide ligand is not planar, with the largest interplanar angle being 16.8 (5)° between the phenyl ring of the 2‐­fluorophenyl group and the plane defined by the N=N—N moiety. The Pd—N(triazenide) and Pd—N(pyridine) distances are 2.021 (3) and 2.039 (3) Å, respectively.  相似文献   

18.
The reaction of α‐keto‐stabilized diphosphine ylides [Ph2P(CH2)nPPh2═C(H)C(O)C6H4p‐CN] (n = 1 (Y1); n = 2 (Y2)) with dibromo(1,5‐cyclooctadiene) palladium(II)/platinum(II) complexes, [Pd/PtBr2(cod)], in equimolar ratio gave the new cyclometalated Pd(II) and Pt(II) complexes [Br2Pd(κ2‐Y1)] ( 1 ), [Br2Pt(κ2‐Y1)] ( 2 ), [Br2Pd(κ2‐Y2)] ( 3 ) and [Br2Pt(κ2‐Y2)] ( 4 ). These compounds were screened in a search for novel antibacterial agents and characterized successfully using Fourier transfer infrared and NMR (1H, 13C and 31P) spectroscopic methods. Also, the structures of complexes 1 and 2 were characterized using X‐ray crystallography. The results showed that the P,C‐chelated complexes 1 and 2 have structures consisting of five‐membered rings, while 3 and 4 have six‐membered rings, formed by coordination of the ligand through the phosphine group and the ylidic carbon atom to the metal centre. Also, a theoretical study of the structures of complexes 1 – 4 was conducted at the BP86/def2‐SVP level of theory. The nature of metal–ligand bonds in the complexes was investigated using energy decomposition analyses (EDA) and extended transition state combined with natural orbitals for chemical valence analyses. The results of EDA confirmed that the main portions of ΔEint, about 57–58%, in the complexes are allocated to ΔEelstat.  相似文献   

19.
The complexes [M(PNHP)I]I (PNHP = bis[2‐(diphenylphosphino)ethyl]amine; M = Pd ( 1 ), Pt ( 2 )) and [M(NP3)I]I (NP3 = tris[2‐(diphenylphosphino)ethyl]amine; M = Pd ( 3 ), Pt ( 4 )) were prepared by interaction of the appropriate aminophosphine in CH2Cl2 with aqueous solutions containing [MCl4]2— salts and NaI in a ratio 1:4. Complexes 2 and 3 form the polynuclear compounds [Pt2(PNHP)3]I4 ( 2a ) and [Pd3(NP3)2I4]I2 ( 3a ) in the presence of coordinating solvents such as the mixture CD3OD/D2O/DMSO‐d6 and CH2Cl2/CH3OH, respectively. Complex 1 consists of distorted square‐planar cations [Pd(PNHP)I]+ and iodide anions able to establish short N‐H···I interactions of 2.850Å. The aminophosphine adopts a boat conformation and is coordinated to palladium in a tridentate chelating fashion. The crystal structure for cations of 3a reveals the presence of two types of distorted square‐planar PdII atoms, PdNP2I and trans‐PdP2I2, NP3 acting as tridentate chelating and bridging ligand, respectively. On the basis of 31P {1H} NMR data it has been shown that each distorted square‐planar Pt(II) centre of 2a contains one PNHP acting as tridentate chelating ligand with the other aminophosphine bridging the two metals via the P atoms. Complexes 3 and 4 were shown by 31P {1H} NMR to have the metal atom bound to the three P atoms of NP3 and one iodo ligand. Additions of AcCysSH and GSH to 4 result, by a ring‐opening process, in the formation of [Pt(NP2PO)(SR)] (RS = Acys ( 4a ), GS ( 4b )) in which the ligand contains a dangling arm phosphine oxide group and the platinum atom achieves the four‐coordination involving the N atom of the aminophosphine. Compounds [Pt2(PNHP)3]Cl4 ( 2a′ , 2a″ ), [PtAu(PNHP)2I]I2 ( 2b ), and [Pt(PNHP)(ONO2)](NO3) ( 2c ) were detected in some extent in solution by reaction of complex 2 with Au(tdg)Cl (tdg = thiodiglycol), AuI and excess AgNO3, respectively. While 1 does not react with AuI, complex 3 affords the heterobimetallic complexes PdCu(NP3)I3 ( 5 ), PdAg2(NP3)I4 ( 6 ) and PdAu(NP3)I3 ( 7 ) by interaction with the appropriate iodide M′I (M′ = Cu, Ag, Au) via a chelate ring‐opening.  相似文献   

20.
The title compounds, trans‐dichloro­bis[(1R,2R,3R,5S)‐(−)‐2,6,6‐trimethyl­bicyclo­[3.1.1]heptan‐3‐amine]palladium(II), [PdCl2(C10H19N)2], and trans‐dichloro­bis[(1S,2S,3S,5R)‐(+)‐2,6,6‐trimethyl­bicyclo­[3.1.1]heptan‐3‐amine]palladium(II) hemihydrate, [PdCl2(C10H19N)2]·0.5H2O, present different arrangements of the amine ligands coordinated to PdII, viz. antiperiplanar in the former case and (−)anticlinal in the latter. The hemihydrate is an inclusion compound, with a Pd coordination complex and disordered water mol­ecules residing on crystallographic twofold axes. The crystal structure for the hemihydrate includes a short Pd⋯Pd separation of 3.4133 (13) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号