首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of dimeric complex [Rh(CO)2Cl]2 with hemilabile ether‐phosphine ligands Ph2P(CH2) nOR [n = 1, R = CH3 (a); n = 2, R = C2H5 (b)] yield cis‐[Rh(CO)2Cl(P ~ O)] (1) [P ~ O = η 1‐(P) coordinated]. Halide abstraction reactions of 1 with AgClO4 produce cis‐[Rh(CO)2(P ∩ O)]ClO4 (2) [P ∩ O = η 2‐(P,O)chelated]. Oxidative addition reactions of 1 with CH3I and I2 give rhodium(III) complexes [Rh(CO)(COCH3)ClI(P ∩ O)] (3) and [Rh(CO)ClI2(P ∩ O)] (4) respectively. The complexes have been characterized by elemental analyses, IR, 1H, 13C and 31P NMR spectroscopy. The catalytic activity of 1 for carbonylation of methanol is higher than that of the well‐known [Rh(CO)2I2]? species. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
The dimeric rhodium precursor [Rh(CO)2Cl]2 reacts with quinoline (a) and its three isomeric carboxaldehyde ligands [quinoline-2-carboxaldehyde (b), quinoline-3-carboxaldehyde (c), and quinoline-4-carboxaldehyde (d)] in 1:2 mole ratio to afford complexes of the type cis-[Rh(CO)2Cl(L)] (1a-1d), where L = a-d. The complexes 1a-1d have been characterised by elemental analyses, mass spectrometry, IR and NMR (1H, 13C) spectroscopy together with a single crystal X-ray structure determination of 1c. The X-ray crystal structure of 1c reveals square planar geometry with a weak intermolecular pseudo dimeric structure (Rh?Rh = 3.573 Å). 1a-1d undergo oxidative addition (OA) with different electrophiles such as CH3I, C2H5I and I2 to give Rh(III) complexes of the type [Rh(CO)(COR)Cl(L)I] {R = -CH3 (2a-2d), R = -C2H5 (3a-3d)} and [Rh(CO)Cl(L)I2] (4a-4d) respectively. 1b exhibits facile reactivity with different electrophiles at room temperature (25 °C), while 1a, 1c and 1d show very slow reactivity under similar condition, however, significant reactivity was observed at a temperature ∼40 °C. The complexes 1a-1d show higher catalytic activity for carbonylation of methanol to acetic acid and methyl acetate [Turn Over Frequency (TOF) = 1551-1735 h−1] compared to that of the well known Monsanto’s species [Rh(CO)2I2] (TOF = 1000 h−1) under the reaction conditions: temperature 130 ± 2 °C, pressure 33 ± 2 bar, 450 rpm and time 1 h. The organometallic residue of 1a-1d was also isolated after the catalytic reaction and found to be active for further run without significant loss of activity.  相似文献   

3.
Dimeric chlorobridge complex [Rh(CO)2Cl]2 reacts with two equivalents of a series of unsymmetrical phosphine–phosphine monoselenide ligands, Ph2P(CH2)nP(Se)Ph2 {n = 1( a ), 2( b ), 3( c ), 4( d )}to form chelate complex [Rh(CO)Cl(P∩Se)] ( 1a ) {P∩Se = η2‐(P,Se) coordinated} and non‐chelate complexes [Rh(CO)2Cl(P~Se)] ( 1b–d ) {P~Se = η1‐(P) coordinated}. The complexes 1 undergo oxidative addition reactions with different electrophiles such as CH3I, C2H5I, C6H5CH2Cl and I2 to produce Rh(III) complexes of the type [Rh(COR)ClX(P∩Se)] {where R = ? C2H5 ( 2a ), X = I; R = ? CH2C6H5 ( 3a ), X = Cl}, [Rh(CO)ClI2(P∩Se)] ( 4a ), [Rh(CO)(COCH3)ClI(P~Se)] ( 5b–d ), [Rh(CO)(COH5)ClI‐(P~Se)] ( 6b–d ), [Rh(CO)(COCH2C6H5)Cl2(P~Se)] ( 7b–d ) and [Rh(CO)ClI2(P~Se)] ( 8b–d ). The kinetic study of the oxidative addition (OA) reactions of the complexes 1 with CH3I and C2H5I reveals a single stage kinetics. The rate of OA of the complexes varies with the length of the ligand backbone and follows the order 1a > 1b > 1c > 1d . The CH3I reacts with the different complexes at a rate 10–100 times faster than the C2H5I. The catalytic activity of complexes 1b–d for carbonylation of methanol is evaluated and a higher turnover number (TON) is obtained compared with that of the well‐known commercial species [Rh(CO)2I2]?. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Novel phosphine oxides, (((3-methylpyridin-2-yl)amino)methyl)diphenylphosphine oxide (1) and diphenyl((pyrazin-2-ylamino)methyl)phosphine oxide (2), were synthesized and characterized. Phosphines ligands (3 and 4) were obtained by the reduction of 1 and 2 with AlH3, monitored by 31P NMR spectroscopy. Pd(II) complexes of 3 and 4 were synthesized and characterized (5 and 6). The catalytic activity of 5 and 6 was tested on the reaction of styrene with both activated and deactivated aryl bromides in air. The results of the catalytic experiments were discussed through DFT calculations.  相似文献   

5.
The present investigation introduces a new series of cycloplatinated(II) complexes, with the general formula Pt(O‐bpy)(Me)(CN‐R)] (R = benzyl, 2‐naphtyl and tert‐butyl), which are able to generate the stable trans‐Pt(IV) product in the solution after the reaction with iodomethane. In fact, the trans product is both the kinetic and thermodynamic product of the reaction; this observation was supported by DFT calculations. These Pt(II) complexes are supported by 2,2'‐bipyridine N‐oxide (O‐bpy) and one of several isocyanides as the cyclometalated and ancillary ligands, respectively. These new Pt(II) complexes undergo oxidative addition with MeI to give the corresponding trans‐Pt(IV) complexes. All the complexes were identified employing the multi‐nuclear NMR spectroscopy and single crystal X‐ray crystallography. The kinetic investigations were also performed for the oxidative addition reactions in order to measure the reaction rates; the reaction was followed by UV‐Vis spectroscopy. The rates obtained follow the trend CN‐tBu > CN‐Bz > CN‐2 Np for the CN‐R ligands in the Pt(II) complexes. The order can be related to the degree of electron‐donation of the R group (tert‐butyl > benzyl > 2‐naphtyl).  相似文献   

6.
Cyclometalated Pt (II) complexes [PtMe(C^N)(L)], in which C^N = deprotonated 2,2′‐bipyridine N‐oxide (Obpy), 1 , deprotonated 2‐phenylpyridine (ppy), 2 , deprotonated benzo [h] quinolone (bzq), 3 , and L = tricyclohexylphosphine (PCy3) were prepared and fully characterized. By treatment of 1–3 with excess MeI, the thermodynamically favored Pt (IV) complexes cis‐[PtMe2I(C^N)(PCy3)] (C^N = Obpy, 1a ; ppy, 2a ; and bzq, 3a ) were obtained as the major products in which the incoming methyl and iodine groups adopted cis positions relative to each other. All the complexes were characterized by means of NMR spectroscopy while the absolute configuration of 1a was further determined by X‐ray crystal structure analysis. The reaction of methyl iodide with 1–3 were kinetically explored using UV–vis spectroscopy. On the basis of the kinetic data together with the time‐resolved NMR investigation, it was established that the oxidative addition reaction occurred through the classical SN2 attack of Pt (II) center on the MeI reagent. Moreover, comparative kinetic studies demonstrated that the electronic and steric nature of either the cyclometalating ligands or the phosphine ligand influence the rate of reaction. Surprisingly, by extending the oxidative addition reaction time, very stable iodine‐bridged Pt (IV)‐Pt (IV) complexes [Pt2Me4(C^N)2(μ‐I)2] (C^N = Obpy, 1b ; ppy, 2b ; and bzq, 3b ) were obtained and isolated. In order to find a reasonable explanation for the observation, a DFT (density functional theory) computational analysis was undertaken and it was found that the results were consistent with the experimental findings.  相似文献   

7.
The chelate complexes of the types (1) and (2) have been synthesized and characterized by IR and NMR spectroscopy. The lower shift of the ν(P-Se) bands and downfield shift of the 31P-{1H}NMR signals for both P(III) and P(V) atoms in 1 and 2 compared to the corresponding free ligands indicate chelate formation through selenium donor. 1 and 2 show terminal ν(CO) bands at 1977 and 1981 cm−1, respectively, suggesting high electron density at the metal center. The molecular structure of 2 has been determined by single-crystal X-ray diffraction. The rhodium atom is at the center of a square planar geometry having the phosphorus and selenium atoms of the chelating ligand at cis-position, one carbonyl group trans- to selenium and one chlorine atom trans- to phosphorus atom. 1 and 2 undergo oxidative addition (OA) reaction with CH3I to produce acyl complexes (3) and (4), respectively. The kinetics of the OA reactions reveal that 1 undergoes faster reaction by about 4.5 times than 2. The catalytic activity of 1 and 2 in carbonylation of methanol was higher than that of the well known species [Rh(CO)2I2] and 2 shows higher catalytic activity compared to 1.  相似文献   

8.
The cis‐[Rh(CO)2ClL] (1) complexes, where L = 2‐methylpyridine (a), 3‐methylpyridine (b), 4‐methylpyridine (c), 2‐phenylpyridine (d), 3‐phenylpyridine (e), 4‐phenylpyridine (f), undergo oxidative addition reactions with various electrophiles, like CH3I, C2H5I, C6H5CH2Cl or I2, to yield complexes of the types [Rh(CO)(COR)ClXL] (2) (where R = CH3 (i), C2H5 (ii), X = I; R = C6H5CH2 (iii), X = Cl) or [Rh(CO)ClI2L] (3) and [Rh(CO)2ClI2L] (4). The pseudo‐first‐order rate constants of CH3I addition with complexes 1 containing pyridine (g) and 2‐substituted pyridine (a and d) ligands were found to follow the order pyridine >2‐methylpyridine >2‐phenylpyridine. The catalytic activity of complexes 1 containing different pyridine ligands (a–g) on carbonylation of methanol was studied and, in general, a higher turnover number was obtained compared with that of the well‐known species [Rh(CO)2I2]?. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
By means of density functional theory calculations, we computationally analyze the physical factors governing the oxidative addition of aryl halides to gold(I) complexes. Using the activation strain model of chemical reactivity, it is found that the strain energy associated with the bending of the gold(I) complex plays a key role in controlling the activation barrier of the process. A systematic study on how the reaction barrier depends on the nature of the aryl halide, ligand, and counteranion allows us to identify the best combination of gold(I) complex and aryl halide to achieve a feasible (i.e., low barrier) oxidative addition to gold(I), a process considered as kinetically sluggish so far. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Bridged rhodium(I) bis(NHC) complexes of the formula [bis-(NHC)Rh(I)PF6] (1c-5c) were synthesized and applied as catalysts in the transfer hydrogenation of acetophenone in 2-propanol. The activity of the rhodium(I) complexes largely depends on the nature of the N-substituents and the applied bases. The synthesized compounds were characterized by elemental analysis, 1H and 13C NMR-spectroscopy and mass spectrometry. The structure of complex 2c was exemplary determined by X-ray analysis.  相似文献   

11.
12.
New Cu(I) and Ag(I) complexes were prepared by reaction of [M(NCCH3)4][X] (M = Cu or Ag; X = BF4 or PF6) with the bidentate chalcogenide ligands Ph2P(E)NHP(E)Ph2 (E = S, S2dppa; E = Se, Se2dppa), and dpspf (1,1′-bis(diphenylselenophosphoryl)ferrocene). Copper and silver behaved differently. While three molecules of either S2dppa and Se2dppa bind to a distorted tetrahedral Cu4 cluster, with deprotonation of the ligand, 1:2 complexes of the neutral ligands are formed with Ag(I), with a tetrahedral coordination of the metal. The [Cu4{Ph2P(Se)NP(Se)Ph2}3]+ clusters assemble as dimers, held together by weak Se?Se distances interactions. Another dimer was observed for the [Ag(dpspf)]+ cation, with two short Ag?Se distances. DFT and MP2 calculations indicated the presence of attracting interactions, reflected in positive Mayer indices (MI). The electrochemistry study of this species showed that both oxidation and reduction took place at silver.  相似文献   

13.
The reactions between five ferrocenyl derivatives containing both a CO and at least an imidazole or pyridine nitrogen atom and AgPF6, AgOTf, or [Cu(NCCH3)4]PF6 precursors were studied. The ligand {[bis(2-pyridyl)amino]carbonyl}ferrocene (L3), derived from (2-pyridyl)amine, favored tetrahedral coordination of Ag+ (with two ligands) and of Cu+ (with two acetonitrile ligands left from the precursor). In all the other ligands, both metal centers coordinated linearly to two ligands, preferring the imidazole or pyridinic nitrogen to other nitrogen atoms (amine) or oxygen donors.When the counter anions were triflate, the crystal structure showed a dimerization of the complex, with the ferrocenyl moieties occupying cis positions, by means of a weak Ag?Ag interaction. This was shown experimentally in the crystal structure of complex [Ag(L1)2]OTf (L1 = ferrocenyl imidazole) and in the presence of peaks corresponding to {Ag2(L2)3(OTf)}+ and {Ag2(L2)4(OTf)}+ in the mass spectra of [Ag(L2)2]OTf (L2 = ferrocenyl benzimidazole). In all complexes containing PF6, there was no evidence for dimerization. Indeed, in the crystal structure of [Ag(L2)2]PF6, the ferrocenyl moieties occupy trans positions and the metal centers are far from each other. DFT calculations showed that the energy of the cis and trans conformers is practically the same and the balance of crystal packing forces leads to dimerization when triflate is present.  相似文献   

14.
The rhenium(I) carbonyl bromide complex, [ReBr(CO)3(HL)], of the ligand derived from 2,4-dihydroxybenzaldehyde and 4-hydroxybenzoic acid hydrazide (HL), has been prepared. HL and its complex have been characterized by elemental analysis, MS, IR, UV-Vis and 1H NMR spectroscopic methods. The structure of HL and the aqua-complex [Re(OH2)(CO)3(L)] where the ligands are monodeprotonated have been elucidated by X-ray diffraction. The structure of [ReBr(CO)3(HL)] has been calculated from conformational parameters found in the aqua-complex. DFT and TDDFT calculations have been performed to obtain the IR spectra and UV-Vis absorption and emission spectra. The calculated spectra agree with the experimental results.  相似文献   

15.
abstract

Computational investigations were done on bis(1-allyl-3-benzyl-2,3-dihydro-1H-benzo[d]imidazol-2-yl)silver(I), bis(1-benzyl-3-butyl-2,3-dihydro-1H-benzo[d]imidazol-2-yl)silver(I), bis(1-allyl-3-benzyl-2,3-dihydro-1H-benzo[d]imidazol-2-yl)dibromidepalladium(II), and bis(1-benzyl-3-butyl-2,3-dihydro-1H-benzo[d]imidazol-2-yl)dibromidepalladium(II) complexes. Related complexes were optimized at different six calculation levels which are HF/6-31G(LANL2DZ), HF/6-31G(d,p)(LANL2DZ), B3LYP/6-31G(LANL2DZ), B3LYP/6-31G(d,p)(LANL2DZ), M062X/6-31G(LANL2DZ) and M062X/6-31G(d,p)(LANL2DZ) levels in vacuo. IR and NMR spectrum are calculated and examined in detail. Energy diagram of molecular orbitals, contour diagram of frontier molecular orbitals, molecular electrostatic potential maps and the harmonic surface of related molecules are examined in detail. Finally, interactions between mentioned complexes and related proteins (1BNA, 1JNX, and 2ING) are investigated in detail. As a result, it is found that biological and anti-cancer properties of silver N-heterocyclic carbene complexes are higher than those of palladium complexes.  相似文献   

16.
The photocarbonylation reaction of Group 6 Fischer carbene complexes has been studied by DFT and experimental procedures. The process occurs by intersystem crossing (ISC) from the lowest excited singlet state (S1) to the lowest triplet state (T1), the latter structure being decisive for the outcome of the reaction. Methylenepentacarbonylchromium(0) complexes, alkoxypentacarbonylchromium(0)carbene complexes, and alkoxyphosphinetetracarbonylchromium(0) carbene complexes have coordinatively unsaturated chromacyclopropanone T1 structures with a biradical character. The evolution of the metallacyclopropanone species occurs by a jump (spin inversion) to the S(0) hypersurface by coordination of a molecule of the solvent, leading to ketene-derived products in the presence of ketenophiles or reverting to the starting carbene complex in their absence. The T1 excited states obtained from methylenephosphinetetracarbonylchromium(0) complexes and pentacarbonyltungsten(0)carbene complexes are unable to produce the carbonylation. The reaction with ketenophiles is favored in coordinating solvents, which has been tested experimentally in the reaction of alkoxypentacarbonylchromium(0) complexes and imines.  相似文献   

17.
Cleavage of the [Ir(η4-COD)Cl]2 dimer in the presence of the corresponding imidazolium salts and the strong base tBuO leads to the formation of Ir(I) derivatives of N-heterocyclic carbenes. When halide is replaced by NaCp, a mixture of [Ir(η4-COD)(NHCR)(η1-Cp)] and [Ir(η2-COD)(NHCR)(η5-Cp)] is obtained. The latter is favored for R = Cy, while the former predominates for R = Me. Conversely, [Ir(η4-COD)(NHCR)(η1-Ind)] is the only product of the reaction with NaInd, despite the R substituent. DFT/B3LYP calculations confirmed that the η1 coordination mode of the ring gives rise to the most stable structures, namely square planar complexes of 5d8 Ir(I). The energy of the 18 electron species containing η2-COD and η5-Ind or Cp is higher by 13 and 5 kcal mol−1, respectively. The fluxional behaviour of indenyl, detected by NMR in the solutions of [Ir(η4-COD)(NHCR)(η1-Ind)], is associated to the low energy of the η3-Ind species required in the conversion process, and is not easily observed in the cyclopentadienyl derivatives, where a similar intermediate is disfavored.  相似文献   

18.
The oxidative carbonylation of alkynes in the oscillation mode was studied. The influence of the nature of substrates, alkynes and alcohols, on the pattern of oscillations was considered. The role of oxidants, I2 and H2O2, in this process was demonstrated. The reaction network of the process was formulated, and four hypothetical mechanisms were selected.  相似文献   

19.
Palladium (Pd)‐catalyzed radical oxidative C?H carbonylation of alkanes is a useful method for functionalizing hydrocarbons, but there is still a lack of understanding of the mechanism, which restricts the application of this reaction. In this work, density functional theory (DFT) calculations were carried out to study the mechanism for a Pd‐catalyzed radical esterification reaction. Two plausible reaction pathways have been proposed and validated by DFT calculations. The computational results reveal that the generated alkyl radical prefers to add to the carbon monoxide (CO) molecule to form a carbonyl radical before bonding with the Pd species. Radical addition onto Pd followed by CO migratory insertion was unfavorable owing to the high energy barrier of the migratory insertion step. The regioselectivity of the C(sp3)?H carbonylation was also investigated by DFT. The results show that the regioselectivity is controlled by both the bond dissociation energy of the reacting C?H bond and the stability of the corresponding generated carbon radical. Competitive side reactions also affected the yield and regioselectivity owing to the rapid consumption of the stable radical intermediate.  相似文献   

20.
The gas phase methane oxidative carbonylation was studied in the presence of molecular oxygen over silica materials including their mechanical mixtures with rhodium chalcogen chlorides obtained in non-aqueous inorganic media. The formation of Rh4SCl7, Rh4S9Cl2, Rh4Se5Cl3 and Rh3Se3Cl solids was confirmed by elemental analysis, IR absorption spectroscopy, XPS and X-ray diffraction. Silica, vanadium-, and molybdenum-containing mesoporous molecular sieves have been used as supports. It was found that productivity of oxygenates (methanol, methyl acetate and acetic acid) depends mainly on the method of the catalyst preparation and the type of the support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号