首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Au/TiO2 nanorod composites with different ratios of [TiO2]:[Au] have been prepared by chemically reducing AuCl4 on the positively charged TiO2 nanorods surface and used to modify boron‐doped diamond (BDD) electrodes. The electrochemical behaviors of catechol on the bare and different Au/TiO2 nanorod composites‐modified BDD electrodes are studied. The cyclic voltammetric results indicate that these different Au/TiO2 nanorod composites‐modified BDD electrodes can enhance the electrocatalytic activity toward catechol detection, as compared with the bare BDD electrode. Among these different conditions, the Au/TiO2‐BDD3 electrode (the ratio of [TiO2]:[Au] is 27:1) is the most choice for catechol detection. The electrochemical response dependences of the Au/TiO2‐BDD3 electrode on pH of solution and the applied potential are studied. The detection limit of catechol is found to be about 1.4 × 10‐6 M in a linear range from 5 × 10‐6 M to 200 × 10‐6 M on the Au/TiO2‐BDD3 electrode.  相似文献   

2.
Photovoltaic conversion has been achieved by use of chloroplasts (photosynthetic organs) from spinach adsorbed on a nanocrystalline TiO2 film on an indium tin oxide (ITO) glass electrode (chloroplast/TiO2 electrode). The shape of the absorption spectrum of the chloroplast/TiO2 electrode is almost the same that of a dispersion of the chloroplasts. Absorption maxima of the chloroplast/TiO2 electrode observed at 430, 475, and 670 nm were attributed to carotenoid and chlorophyll molecules, suggesting that chloroplasts have been adsorbed by the nanocrystalline TiO2 film on the ITO electrode. The photocurrent responses of chloroplast/TiO2 electrodes were measured by using a solution of 0.1 M tetrabutylammonium hexafluorophosphate in acetonitrile as redox electrolyte in the presence or absence of water and 100 mW cm?2 irradiation. The photocurrent of the chloroplast/TiO2 electrode was increased by adding water to the redox electrolyte. The photocurrent responses of chloroplast/TiO2 electrodes irradiated with monochromatic light (680 nm, the absorption band of photosystem II complexed with evolved oxygen) were measured by use of a solution of 0.1 M tetrabutylammonium hexafluorophosphate in acetonitrile as redox electrolyte in the presence or absence of water. A chloroplast/TiO2 electrode photocurrent was observed only when the redox electrolyte containing water was used, indicating that the oxygen evolved from water by photosystem II in chloroplasts adsorbed by a nanocrystalline TiO2 film on an ITO electrode irradiated at 680 nm is reduced to water by the catalytic activity of the platinum electrode. The maximum incident photon-to-current conversion efficiency (IPCE) was 0.8 % on irradiation at 670 nm.  相似文献   

3.
In this work, an novel electrochemical‐chemical‐chemical (ECC) redox cycle was designed in an enzyme‐based sensor for acquiring additional signal amplification. The tyrosinase (Tyr) was entrapped in a sulfonated polyaniline?chitosan (SPAN?CS) composite which was used as a redox capacitor on a glass carbon electrode. Firstly, the substrate, phenol was catalyzed to catechol and further catalyzed to o‐benzoquinone by Tyr. Next, in the presence of Ru(NH3)6Cl2, the reduced state of SPAN(SPANred) was reacted with o‐benzoquinone to form it's oxidized state (SPANox) and catechol, then SPANox was reduced back to SPANred by Ru(II) in the solution. Finally, the amplified anodic current of catechol was obtained on electrode through above ECC redox cycle system. In addition, the ECC redox cycling led to a high signal‐to‐background ratio. The voltammetric response showed excellent analytical performance to phenol over two linear range of 3.5 to 200.0 nmol L?1 and 200.0 to 2000.0 nmol L?1 with a high sensitivity of 2204 μA mM?1. The detection limit was obtained to be 0.8 nmol L?1 (S/N=3). Furthermore, the proposed approach exhibited good repeatability, stability and specificity, and could offer practicality in the detection of phenol in tap water.  相似文献   

4.
This paper reports sensitive phenol detection using (i) tyrosinase (Tyr)‐based oxidation of phenol to catechol, combined with (ii) electrochemical‐chemical‐chemical (ECC) redox cycling involving Ru(NH3)63+, catechol, and tris(2‐carboxyethyl)phosphine (TCEP). Phenol is converted into catechol by Tyr in the presence of dissolved O2. Catechol then reacts with Ru(NH3)63+, generating o‐benzoquinone and Ru(NH3)62+. o‐Benzoquinone is reduced back to catechol by TCEP, and Ru(NH3)62+ is accumulated over the course of the incubation. When Ru(NH3)62+ is electrochemically oxidized to Ru(NH3)63+, ECC redox cycling occurs. For simple phenol detection, bare ITO electrodes are used without modifying the electrodes with Tyr. The detection limit for phenol in tap water using Tyr‐based oxidation combined with ECC redox cycling is ca. 10?9 M, while that using only Tyr‐based oxidation is ca. 10?7 M.  相似文献   

5.
C60 carboxylic acid derivatives can be readily adsorbed on the surface of nanocrystalline TiO2 film. The C60 carboxylic acids adsorbed on nanocrystalline TiO2 films act as charge‐transfer sensitizer. The electron transport from TiO2 to the C60 derivatives results in the generation of the cathodic photocurrent. The short‐circuit photocurrent of a C60 tetracarboxylic acid is 0.45 μA/cm2 under 464 nm light illumination. The photoelectric behaviour of ITO electrodes modified by the same C60 carboxylic acids is different from that of the modified TiO2 electrodes, and shows anodic photocurrent.  相似文献   

6.
Catechol can be oxidized electrochemically to its corresponding o‐benzoquinone. The electrogenerated quinone can be deposited by cycling the potential at the surface of glassy carbon electrodes. We have studied the electrochemical features of films derived from catechol by cyclic voltammetry. The electrodeposited film shows stable reversible redox response, dependent on pH as anticipated for quinone/catechol functionalities. Glassy carbon electrodes covered with a film derived from catechol exhibit catalytic activity in the electrooxidation of NADH at a low potential. The catalytic current is proportional to the concentration of NADH over the range 0.02–0.34 mM.  相似文献   

7.
The efficient electron injection by direct dye‐to‐TiO2 charge transfer and strong adhesion of mussel‐inspired synthetic polydopamine (PDA) dyes with TiO2 electrode is demonstrated. Spontaneous self‐polymerization of dopamine using dip‐coating (DC) and cyclic voltammetry (CV) in basic buffer solution were applied to TiO2 layers under a nitrogen atmosphere, which offers a facile and reliable synthetic pathway to make the PDA dyes, PDA‐DC and PDA‐CV, with conformal surface and perform an efficient dye‐to‐TiO2 charge transfer. Both synthetic methods led to excellent photovoltaic results and the PDA‐DC dye exhibited larger current density and efficiency values than those in the PDA‐CV dye. Under simulated AM 1.5 G solar light (100 mW cm?2), a PDA‐DC dye exhibited a short circuit current density of 5.50 mW cm?2, corresponding to an overall power conversion efficiency of 1.2 %, which is almost 10 times that of the dopamine dye‐sensitized solar cell. The PDA dyes showed strong adhesion with the nanocrystalline TiO2 electrodes and the interface engineering of a dye‐adsorbed TiO2 surface through the control of the coating methods, reaction times and solution concentration maximized the overall conversion efficiency, resulting in a remarkably high efficiency.  相似文献   

8.
Nickel nanoparticles/TiO2 nanotubes/Ti electrodes were prepared by galvanic deposition of nickel nanoparticles on the TiO2 nanotubes layer on titanium substrates. Titanium oxide nanotubes were fabricated by anodizing titanium foil in a DMSO fluoride‐containing electrolyte. The morphology and surface characteristics of titanium dioxide nanotubes and Ni/TiO2/Ti electrodes were investigated using scanning electron microscopy and energy‐dispersive X‐ray spectroscopy, respectively. The results indicated that nickel nanoparticles were homogeneously deposited on the surface of TiO2 nanotubes. The electrocatalytic behaviour of nickel nanoparticles/TiO2/Ti electrodes for the methanol electrooxidation was studied by electrochemical impedance spectroscopy, cyclic voltammetry, differential pulse voltammetry and chronoamperometry methods. The results showed that Ni/TiO2/Ti electrodes exhibit a considerably higher electrocatalytic activity toward the oxidation of methanol.  相似文献   

9.
Application of organic electrode materials in rechargeable batteries has attracted great interest because such materials contain abundant carbon, hydrogen, and oxygen elements. However, organic electrodes are highly soluble in organic electrolytes. An organic electrode of 2,3,5,6‐tetraphthalimido‐1,4‐benzoquinone (TPB) is reported in which rigid groups coordinate to a molecular benzoquinone skeleton. The material is insoluble in aprotic electrolyte, and demonstrates a high capacity retention of 91.4 % (204 mA h g−1) over 100 cycles at 0.2 C. The extended π‐conjugation of the material contributes to enhancement of the electrochemical performance (155 mA h g−1 at 10 C). Moreover, density functional theory calculations suggest that favorable synergistic reactions between multiple carbonyl groups and lithium ions can enhance the initial lithium ion intercalation potential. The described approach may provide a novel entry to next‐generation organic electrode materials with relevance to lithium‐ion batteries.  相似文献   

10.
The development of nanostructured semiconductor electrodes represented by a mesoporous TiO2 nanocrystalline (mp-TiO2) film is currently bringing great progresses in photoelectrochemical (PEC) devices for solar-to-electricity and solar-to-chemical conversion. Two serious losses can occur in PEC devices: 1) recombination between the conduction band (CB) electrons and valence band (VB) holes in the bulk and at the surface and 2) back reaction or electron trapping by oxidant in the electrolyte solution during transport to the electron-collecting electrode. Thus, the major challenge in common with the nanostructured semiconductor photoanodes is to achieve efficient charge separation and electron transport. In this study, an ultrathin SiOx layer was formed on both the external and the internal surface of mp-TiO2 using an original chemisorption-calcination technique employing 1,3,5,7-tetramethyltetrasiloxane as a starting material. The SiOx surface modification of the mp-TiO2 photoanode drastically prolongs the mean lifetime of CB-electrons in TiO2 because of enhanced charge separation and electron transport by the negative charge applied in aqueous electrolyte solution. We have demonstrated that the performance of a one-compartment H2O2-photofuel cell using mp-TiO2 as the photoanode is greatly boosted by the surface modification with the SiOx layer. We anticipate that this methodology is widely applicable to nanostructured metal oxide semiconductor electrodes, contributing to the improvement in the performance of PEC devices.  相似文献   

11.
The ferrocenylsilylation of the phenol triallyl dendron 2, of the phenol nonaallyl dendron 4, and of the 9-, 27-, 81-, and 243-allyl dendrimers 7-10 (monitored by the disappearance of the signals of the olefinic protons in 1H NMR spectra) has been achieved using ferrocenyldimethylsilane 1 and Karstedt's catalyst in diethyl ether at 40 degrees C, yielding the corresponding ferrocenyl dendrons and dendrimers. An alternative convergent synthesis of the nonaferrocenyl dendron 5 was carried out by reaction of the triferrocenyl dendron 2 with a protected triododendron followed by deprotection. Reaction of the nonaferrocenyl dendron 5 with hexakis(bromomethyl)benzene gave the 54-ferrocenyl dendron 6. All the ferrocenyl dendron and dendrimers produce a chemically and electrochemically reversible ferrocenyl oxidation wave at seemingly the same potential. Stable platinum electrodes modified with the high ferrocenyl dendrimers were fabricated. The soluble orange-red ferrocenyl dendrimers can also be oxidized in CH2Cl2 by [NO][PF6] to the insoluble deep blue polyferrocenium dendrimers. For instance, the 243-ferrocenium dendrimer has been characterized by its Mossbauer spectrum, which is of the same type as that of ferrocenium itself. The ferrocenium dendrimers can be reduced without any decomposition back to the ferrocenyl dendrimer, indicating that these multielectronic redoxstable dendrimers behave as molecular batteries.  相似文献   

12.
The ferrocenyl‐nucleoside, 5‐ethynylferrocenyl‐2′‐deoxycytidine ( 1 ) has been prepared by Pd‐catalyzed cross‐coupling between ethynylferrocene and 5‐iodo‐2′‐deoxycytidine and incorporated into oligonucleotides by using automated solid‐phase synthesis at both silica supports (CPG) and modified single‐crystal silicon electrodes. Analysis of DNA oligonucleotides prepared and cleaved from conventional solid supports confirms that the ferrocenyl‐nucleoside remains intact during synthesis and deprotection and that the resulting strands may be oxidised and reduced in a chemically reversible manner. Melting curve data show that the ferrocenyl‐modified oligonucleotides form duplex structures with native complementary strands. The redox potential of fully solvated ferrocenyl 12‐mers, 350 mV versus SCE, was shifted by +40 mV to a more positive potential upon treatment with the complement contrary to the anticipated negative shift based on a simple electrostatic basis. Automated solid‐phase methods were also used to synthesise 12‐mer ferrocenyl‐containing oligonucleotides directly at chemically modified silicon <111> electrodes. Hybridisation to the surface‐bound ferrocenyl‐DNA caused a shift in the reduction potential of +34 mV to more positive values, indicating that, even when a ferrocenyl nucleoside is contained in a film, the increased density of anions from the phosphate backbone of the complement is still dominated by other factors, for example, the hydrophobic environment of the ferrocene moiety in the duplex or changes in the ferrocene–phosphate distances. The reduction potential is shifted >100 mV after hybridisation when the aqueous electrolyte is replaced by THF/LiClO4, a solvent of much lower dielectric constant; this is consistent with an explanation based on conformation‐induced changes in ferrocene–phosphate distances.  相似文献   

13.
In this study, we investigate highly efficient sonogel carbon electrode (SGC/TiO2) modified with nanostructured titanium dioxide synthesized via sol-gel method employing surfactant template for tailor-designing the structural properties of TiO2. The stable SGC/TiO2 electrode detects catechol, a neurotransmitter, in the presence of ascorbic acid, a common interferent, using cyclic voltammetry. A possible rationale for the stable catechol detection of SGC/TiO2 electrode is attributed to most likely the adsorption of catechol onto highly porous TiO2 (surface area of 147 m2 g−1 and porosity of 46.2%), and the formation of C6H4(OTi)2 bond between catechol and TiO2. The catechol absorbed onto TiO2 rapidly reaches the SGC surface, then is oxidized, involving two electrons (e) and two protons (H+). As a result, the surface of TiO2 acts as an electron-transfer accelerator between the SGC electrode and catechol. In addition to the quantitative and qualitative detection of catechol, the SGC/TiO2 electrode developed here meets the profitable features of electrode including mechanical stability, physical rigidity, and enhanced catalytic properties.  相似文献   

14.
The treatment of di‐o‐quinone 4,4′‐(ethane‐1,2‐diyl)‐bis(3,6‐di‐tert‐butyl‐o‐benzoquinone) (Q–CH2–CH2–Q, 1 ) leads to its rearrangement to form di‐p‐quinomethide 4,4′‐(ethane‐1,2‐diylidene)bis(2‐hydroxy‐3,6‐di‐tert‐butyl‐cyclohexa‐2,5‐dienone) ( 2 ). The subsequent oxidation of 2 by an alkaline solution of K3[Fe(CN)6] yielded the new di‐o‐quinone 4,4′‐(ethene‐1,2‐diyl)bis(3,6‐di‐tert‐butyl‐o‐benzoquinone) (Q–CH=CH–Q, 3 ), which contains an ethylene bridge. The formation of mono‐ and poly‐reduced derivatives of 2 and 3 with potassium, thallium was studied by EPR technique. The dinuclear thallium derivative of 3 , Tl(SQ–CH=CH–SQ)Tl, was found to exist in the diamagnetic quinomethide form. The most stable derivatives of 2 and 3 are triphenyltin(IV) bis‐p‐quinomethide‐phenolate ( 4 ) and triphenylantimony(V) bis‐catecholate ( 5 ), which have been synthesized and isolated. The molecular structures of 2 , 3 , and 5 were characterized by single‐crystal X‐ray diffraction.  相似文献   

15.
Reference electrodes for room temperature ionic liquid (RTIL) applications were constructed that have a known and reproducible potential versus the ferrocene/ferrocenium couple. They are based on reference electrodes of the first kind, Ag/Ag+ couple type, or of the second kind, based on Ag/AgCl in M+Cl?. The former uses AgNO3 salt and the latter tetrabutylammonium chloride, Bu4NCl, dissolved in acetonitrile which are then introduced to the ionic liquid of choice for a final concentration of 0.1 M. The reference electrodes can be easily and reproducibly constructed. An ionic contact of these reference systems with the test electrolyte was made using an asbestos fiber liquid junction. The internal compartment of the reference system was filled with the same ionic liquid as used for the electrochemical experiment. The performance of these reference electrodes was tested in selected ionic liquids using the ferrocene/ferrocenium redox couple. The stability, reproducibility, and temperature behavior of the two reference systems have been characterized in the following ionic liquids: 1‐butyl‐3‐methylimidazolium tetrafluoroborate (BMIBF4), 1‐butyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI(CF3SO2)2N), and 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIPF6). It has been found that the formal potentials of the examined reference systems are stable over several days. There is a linear relationship for the temperature studied in the range from 25 to 60 °C.  相似文献   

16.
Gold electrodes were modified with submonolayers of 3‐mercaptopropionic acid and further reacted with poly(amidoamine) (PAMAM) dendrimers to obtain thin films. The high affinity of PAMAM dendrimer for nano‐Au with its amine groups was used to realize the role of nano‐Au as an intermediator to immobilize the enzyme of tyrosinase. The characterization of the modified electrode was investigated by cyclic voltammetry, electrochemical impedance spectroscopy and atomic force microscopy (AFM). Tyrosinase can catalyze the oxidation of catechol to o‐benzoquinone. When penicillamine was added to the solution, it reacted with o‐benzoquinone to form the corresponding thioquinone derivatives, which resulted in decrease of the reduction current of o‐benzoquinone. Based on this, a new electrochemical sensor for determination of penicillamine has been developed.  相似文献   

17.
An organic-medium screen-printing technique was developed for making porous TiO2 electrodes. The TiO2 pastes were prepared by mixing only 100% polyalkylene glycol and commercial nanocrystalline TiO2 powders. The obtained paste is highly printable and hard to evaporate during printing. The TiO2 electrodes have a very porous structure with large cavities. The dye-sensitized solar cell based on these meso-macroporous TiO2 electrodes exhibits high overall conversion efficiency of 4.3–5.8%, which is comparable to those of prepared by water or terpineol medium.  相似文献   

18.
This article describes an electrochemical strategy to achieve low background‐current levels in horse‐radish peroxidase (HRP)‐based electrochemical immunosensors. The strategy consists of (i) the use of an HRP substrate/product redox couple whose formal potential is high and (ii) the use of an electrode that shows moderate electrocatalytic activity for the redox couple. The strategy is proved by a model biosensor using a catechol/o‐benzoquinone redox couple and an indium tin oxide (ITO) electrode. The combined effect of high formal potential and moderate electrocatalytic activity allows o‐benzoquinone electroreduction with minimal catechol electrooxidation and H2O2 electroreduction. The detection limit for mouse‐IgG is 100 pg/mL.  相似文献   

19.
A mononuclear iron(II) complex, [Fe(phen)3]Cl2 ( 1 ) (phen =1,10‐phenanthroline), has been synthesized in crystalline phase and characterized using various spectroscopic techniques including single crystal X‐ray diffraction. Crystal structure analysis revealed that 1 crystallizes in a monoclinic system with C2/m space group. Complex 1 acts as a functional model for a biomimetic catalyst promoting the aerobic oxidation of 3,5‐di‐tert ‐butylcatechol (3,5‐DTBC) through radical pathways with a significant turnover number (k cat =3.55 × 103 h−1) and exhibits catechol dioxygenase activity towards the same 3,5‐DTBC substrate at room temperature in oxygen‐saturated ethanol medium. The existence of an isobestic point at 610 nm from spectrophotometric data indicates the presence of Fe3+ −3,5‐DTBC adduct favouring an enzyme–substrate binding phenomenon. Upon stoichiometric addition of 3,5‐DTBC pretreated with two equivalents of triethylamine to the iron complex, two catecholate‐to‐iron(III) ligand‐to‐metal charge transfer bands (575 and 721 nm) are observed and the in situ generated catecholate intermediate reacts with dioxygen (k obs =9.89 × 10−4 min−1) in ethanol medium to afford exclusively intradiol cleavage products along with a small amount of benzoquinone, and a small amount of extradiol cleavage products, which provide substantial evidence for a substrate activation mechanism. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Nitro‐aromatic compounds can be photocatalytically reduced into the corresponding amine‐aromatic compounds using TiO2 as a photocatalyst in the UV/TiO2/holes scavenger and Vis/TiO2/dye‐sensitized systems. In the UV/TiO2/holes scavenger system, reaction substrate alcohols such as methanol could be used as the holes scavengers, and in the Vis/TiO2/dye‐sensitized system, substrate alcohols could be oxidized to the corresponding aldehydes with high selectivity. When methanol was used as the holes scavengers and the illumination time was 6 h, 87.2% of p‐nitrotoluene could be photocatalytically reduced into p‐toluidine. In the Vis/TiO2/dye‐sensitized system, the effect of aromatic alcohols for the photocatalytic reduction of nitrobenzene was better than that of other alcohols. At the same time, aromatic alcohols can be easily oxidized, and the production efficiencies of the corresponding aldehydes were higher than those of other alcohols. The possible reaction mechanisms were also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号