首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
应用层析高时间分辨率粒子图像测速技术(tomographic time-resolved particle image velocimetry,Tomo-TRPIV),测量了Reθ=2 460的平板湍流边界层三维3分量瞬时速度场的时间序列.提出湍流空间多尺度局部平均速度结构函数的概念,应用流向脉动速度沿流向的空间多尺度局部平均速度结构函数的正负过零点法,从瞬时脉动速度场中检测相干结构的喷射和扫掠事件,对检测到的喷射和扫掠事件的瞬态局部速度场、速度梯度场、涡量场、速度变形率场进行空间相位对齐叠加平均,获得喷射和扫掠事件的局部速度场、速度梯度场、涡量场、速度变形率场的典型特征.研究发现,相干结构喷射和扫掠时,速度梯度、速度变形率、涡量均表现为空间反对称分布的4极子结构.特别是流向涡量是沿流向、法向、展向均为反对称分布的法向多层4极子结构,表明法向各层相干结构是紧密联系,互相关联的.这种法向多层的4极子反对称结构导致强烈的动量、质量和能量交换,维持了相干结构的演化和发展过程.   相似文献   

2.
湍流边界层近壁区多个相干结构的数值模拟   总被引:1,自引:0,他引:1  
陆昌根 《计算物理》2002,19(5):383-387
从流动稳定性理论中的一般共振三波概念出发,提出一种湍流边界层近壁区多个相干结构的理论模型,采用高精度差分格式和Fourier谱展开相结合的方法,求解三维不可压Navier-Stokes方程,直接数值模拟近壁湍流多个相干结构的演化问题.并将得到的湍流边界层近壁区多个相干结构的数值演化特性与实验观察到的特性进行了比较.  相似文献   

3.
槽道湍流展向振荡电磁力控制的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
梅栋杰  范宝春  陈耀慧  叶经方 《物理学报》2010,59(12):8335-8342
对槽道湍流的展向振荡电磁力控制进行了实验研究,讨论了展向振荡电磁力对宏观流场、近壁湍流结构以及壁面阻力的影响.采用谱方法进行了数值模拟的对比.数值模拟和实验结果均表明展向振荡电磁力能够使近壁区域的宏观流场产生周期性振荡,并影响壁湍流的条带结构,使其在展向上发生倾斜,从而使壁面阻力减小.  相似文献   

4.
建立了开式旋转圆盘系统减阻实验平台,对圆盘螺线沟槽减阻进行实验研究,并可以结合数值研究手段对微型沟槽减阻的机理进行研究。实验结果表明圆盘开槽面积为7.4%时,螺线微型沟槽使得旋转圆盘的最大减阻率达6.1%,V型沟槽两侧的压力差所产生的正扭矩是其减阻的主要原因。沟槽还能起到提高圆盘内径与外径处的静压差的效果。研究结果还表明,采用和平板减阻相同的无量纲尺寸的沟槽会引起圆盘表面的剪应力较大增加。  相似文献   

5.
刘强  罗振兵  邓雄  程盼  王林  周岩 《气体物理》2021,6(3):30-42
可压缩边界层转捩问题与湍流问题一直是制约高超声速飞行器发展的关键基础问题,也是近年来流体力学领域研究的热点问题.采用直接数值模拟方法,获得了空间发展的Ma=2.25超声速湍流边界层流场,通过对湍流边界层的发展状态进行评估,得出有效的Reynolds数Reθ 范围约为2600~4600.对壁面摩阻系数开展了分解,获得了各...  相似文献   

6.
湍流边界层拟序结构的大涡模拟研究   总被引:1,自引:0,他引:1  
采用动力亚格子模型,利用大涡模拟方法模拟了雷诺数为13000的充分发展槽道湍流流动。从瞬时速度和脉动 速度场、脉动速度相关、均方根脉动涡量分布、以及瞬时涡量场等多个方面,对湍流边界层流动的拟序结构进行了分析, 包括近壁区小尺度湍流结构和瞬态过程,如条纹结构、喷射和扫掠过程、以及近壁旋涡结构等。  相似文献   

7.
王晓娜  耿兴国  臧渡洋 《物理学报》2013,62(5):54701-054701
本文设计了具有相同平均沟槽密度的三种排列类型的一维沟槽结构: 密排列、周期间隔排列和两种准周期间隔排列, 并采用数值模拟和实验验证相结合的方法研究了一维沟槽结构在不同排列下的流体减阻特性. 模拟计算分析流场特征和总阻力, 发现相对于密排列和周期间隔排列的沟槽结构, 准周期间隔排列具有更好的减阻特性, 并且这一结果得到减阻实验的验证. 通过流场分布特性进一步分析沟槽结构的减阻机理. 机理分析发现高速流在经一维准周期结构的扰动波调制后形成了准周期间隔排列的速度条纹相, 这有效地抑制了大涡在流向和展向上的形成, 从而实现较大幅度的减阻. 同时对比分析沟槽排列结构调制展向涡和流向涡各自对流动减阻的贡献, 结果表明, 调制流向涡对减阻的作用更大. 关键词: 流体减阻 沟槽结构 准周期  相似文献   

8.
湍流对离轴列阵高斯光束相干与非相干合成的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
季小玲  李晓庆 《物理学报》2008,57(12):7674-7679
研究了湍流对离轴列阵高斯光束相干与非相干合成的影响.推导出了相干合成光束的传输方程.采用二阶矩束宽、桶中功率和参数β作为光束质量评价参数比较了离轴列阵高斯光束通过湍流大气的相干与非相干合成,并对主要结果给予了合理的物理解释.研究表明:一方面,不论是相干合成还是非相干合成,湍流都使得合成光束扩展、峰值光强下降,并且子光束数越多,合成光束受湍流影响就越小.另一方面,非相干合成光束较相干合成光束受到湍流的影响要小. 关键词: 相干与非相干合成 湍流大气 离轴列阵高斯光束  相似文献   

9.
沟槽壁面减阻机理实验研究   总被引:21,自引:0,他引:21  
利用IFA300型热线风速仪,测量了光滑壁面和沟槽减阻壁面湍流边界层内的瞬时速度,利用自行设计的阻力天平仪测量了壁面摩擦力。得到了边界层无量纲速度分布和平均湍动能分布。对测得的脉动速度信号,利用离散正交小波变换按时间和尺度分解,得到各尺度分量的湍动能,并且发现其分布在湍流惯性区具有极大值。分析表明,当沟槽有减阻效果时,边界层内的平均湍动能减小,湍流惯性区各分量的湍动能极大值亦减小。  相似文献   

10.
管新蕾  王维  姜楠 《物理学报》2015,64(9):94703-094703
基于相同雷诺数下清水和高分子聚合物溶液壁湍流的高时间分辨率粒子图像测速技术(time-resolved particle image velocimetry, TRPIV)的对比实验, 从高聚物溶液对湍流边界层动量能量输运影响的角度分析其减阻的机理. 对比两者的雷诺应力发现高聚物的存在抑制了湍流输运过程. 这一影响与高聚物对壁湍流中占主导地位的涡旋运动和低速条带等相干结构的作用密切相关. 运用条件相位平均、相关函数和线性随机估计(linear stochastic estimation, LSE)等方法, 分析提取了高聚物溶液流场中的发卡涡和发卡涡包等典型相干结构的空间拓扑形态. 相比于清水, 高聚物溶液中相干结构的流向尺度增大, 涡旋运动的发展及低速流体喷射的强度受到削弱, 表明了添加的高聚物阻碍了湍流原有的能量传递和自维持的机理. 正是通过影响相干结构, 高聚物抑制了湍流边界层中近壁区与外区之间的动量和能量输运, 使得湍流的无序性降低, 从而减小了湍流流动的阻力.  相似文献   

11.
Time-resolved particle image velocimetry(TRPIV) experiments are performed to investigate the coherent structure's performance of riblets in a turbulent boundary layer(TBL) at a friction Reynolds number of 185. To visualize the energetic large-scale coherent structures(CSs) over a smooth surface and riblets, the proper orthogonal decomposition(POD) and finite-time Lyapunov exponent(FTLE) are used to identify the CSs in the TBL. Spatial-temporal correlation is implemented to obtain the characters and transport properties of typical CSs in the FTLE fields. The results demonstrate that the generic flow structures, such as hairpin-like vortices, are also observed in the boundary layer flow over the riblets, consistent with its smooth counterpart. Low-order POD modes are more sensitive to the riblets in comparison with the high-order ones,and the wall-normal movement of the most energy-containing structures are suppressed over riblets. The spatial correlation analysis of the FTLE fields indicates that the evolution process of the hairpin vortex over riblets are inhibited. An apparent decrease of the convection velocity over riblets is noted, which is believed to reduce the ejection/sweep motions associated with high shear stress from the viscous sublayer. These reductions exhibit inhibition of momentum transfer among the structures near the wall in the TBL flows.  相似文献   

12.
Through temporal mode direct numerical simulation, flow field database of a fully developed turbulent boundary layer on a flat plate with Mach number 4.5 and Reynolds number Reθ =1094 has been obtained. Commonly used detection meth- ods in experiments are applied to detecting coherent structures in the flow field, and it is found that coherent structures do exist in the wall region of a supersonic turbulent boundary layer. The detected results show that a low-speed streak is de- tected by using the Mu-level method, the rising parts of this streak are detected by using the second quadrant method, and the crossing regions from a low-speed streak to the high-speed one are detected by using the VITA method respectively. Notwithstanding that different regions are detected by different methods, they are all accompanied by quasi-stream-wise vortex structures.  相似文献   

13.
王维  管新蕾  姜楠 《中国物理 B》2014,23(10):104703-104703
The present experimental work focuses on a new model for space–time correlation and the scale-dependencies of convection velocity and sweep velocity in turbulent boundary layer over a flat wall. A turbulent boundary layer flow at Reθ= 2460 is measured by tomographic particle image velocimetry(tomographic PIV). It is demonstrated that arch, cane,and hairpin vortices are dominant in the logarithmic layer. Hairpins and hairpin packets are responsible for the elongated low-momentum zones observed in the instantaneous flow field. The conditionally-averaged coherent structures systemically illustrate the key roles of hairpin vortice in the turbulence dynamic events, such as ejection and sweep events and energy transport. The space–time correlations of instantaneous streamwise fluctuation velocity are calculated and confirm the new elliptic model for the space–time correlation instead of Taylor hypothesis. The convection velocities derived from the space–time correlation and conditionally-averaged method both suggest the scaling with the local mean velocity in the logarithmic layer. Convection velocity result based on Fourier decomposition(FD) shows stronger scale- dependency in the spanwise direction than in streamwise direction. Compared with FD, the proper orthogonal decomposition(POD) has a distinct distribution of convection velocity for the large- and small-scales which are separated in light of their contributions of turbulent kinetic energy.  相似文献   

14.
Using Finite-Time Lyapunov Exponents (FTLE) method, Lagrangian coherent structures (LCSs) in a fully developed flat-plate turbulent boundary layer are successfully identified from a two-dimensional (2D) velocity field obtained by time-resolved 2D PIV measurement. The typical LCSs in the turbulent boundary layer are hairpin-like structures, which are characterized as legs of quasi-streamwise vortices extending deep into the near wall region with an inclination angle θ to the wall, and heads of the transverse vortex tube located in the outer region. Statistical analysis on the characteristic shape of typical LCS reveals that the probability density distribution of θ accords well with t-distribution in the near wall region, but presents a bimodal distribution with two peaks in the outer region, corresponding to the hairpin head and the hairpin neck, respectively. Spatial correlation analysis of FTLE field is implemented to get the ensemble-averaged inclination angle θ R of typical LCS. θ R first increases and then decreases along the wall-normal direction, similar to that of the mean value of θ. Moreover, the most probable value of θ saturates at y +=100 with the maximum value of about 24°, suggesting that the most likely position where hairpins transit from the neck to the head is located around y +=100. The ensemble- averaged convection velocity U c of typical LCS is finally calculated from temporal-spatial correlation analysis of FTLE field. It is found that the wall-normal profile of the convection velocity U c(y) accords well with the local mean velocity profile U(y) beyond the buffer layer, evidencing that the downstream convection of hairpins determines the transportation properties of the turbulent boundary layer in the log-region and beyond. Supported by the National Natural Science Foundation of China (Grant Nos. 10425207 and 10832001)  相似文献   

15.
Based on the theoretical model for a single coherent structure in the wall region of a turbulent boundary layer, we studied the interaction of two coherent structures by direct numerical simulation in order to explain the mechanism for the formation of low-speed streaks.  相似文献   

16.
Direct numerical simulations(DNS) were performed for the forced homogeneous isotropic turbulence(FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading influenced by drag-reducing effects.The finite elastic non-linear extensibility-Peterlin model(FENE-P) was used as the conformation tensor equation for the viscoelastic polymer solution.Detailed analyses of DNS data were carried out in this paper for the turbulence scaling law and the topological dynamics of FHIT as well as the important turbulent parameters,including turbulent kinetic energy spectra,enstrophy and strain,velocity structure function,small-scale intermittency,etc.A natural and straightforward definition for the drag reduction rate was also proposed for the drag-reducing FHIT based on the decrease degree of the turbulent kinetic energy.It was found that the turbulent energy cascading in the FHIT was greatly modified by the drag-reducing polymer additives.The enstrophy and the strain fields in the FHIT of the polymer solution were remarkably weakened as compared with their Newtonian counterparts.The small-scale vortices and the small-scale intermittency were all inhibited by the viscoelastic effects in the FHIT of the polymer solution.However,the scaling law in a fashion of extended self-similarity for the FHIT of the polymer solution,within the presently simulated range of Weissenberg numbers,had no distinct differences compared with that of the Newtonian fluid case.  相似文献   

17.
Jin-Hao Zhang 《中国物理 B》2022,31(7):74702-074702
The turbulent boundary layer (TBL) is actively controlled by the synthetic jet generated from a circular hole. According to the datasets of velocity fields acquired by a time-resolved particle image velocimetry (TR-PIV) system, the average drag reduction rate of 6.2% in the downstream direction of the hole is obtained with control. The results of phase averaging show that the synthetic jet generates one vortex pair each period and the consequent vortex evolves into hairpin vortex in the environment with free-stream, while the reverse vortex decays rapidly. From the statistical average, it can be found that a low-speed streak is generated downstream. Induced by the two vortex legs, the fluid under them converges to the middle. The drag reduction effect produced by the synthetic jet is local, and it reaches a maximum value at x+=400, where the drag reduction rate reaches about 12.2%. After the extraction of coherent structure from the spatial two-point correlation analysis, it can be seen that the synthetic jet suppresses the streamwise scale and wall-normal scale of the large scale coherent structure, and slightly weakens the spanwise motion to achieve the effect of drag reduction.  相似文献   

18.
The time sequence signals of instantaneous longitudinal and normal velocity components at different vertical locations in the turbulent boundary layer over a smooth flat plate have been finely measured by constant temperature anemometry of model IFA-300 and X-shaped hot-wire sensor probe in a wind tunnel. The longitudinal and normal velocity components have been decomposed into multi-scales by wavelet transform. The upward eject and downward sweep motions in a burst process of coherent structure have been detected by the maximum energy criterion of identifying burst event in wall turbulence through wavelet analysis. The relationships of phase-averaged waveforms among longitudinal velocity component, normal velocity component and Reynolds stress component have been studied through a correlation function method. The dynamics course of coherent structures and their effects on statistical characteristics of turbulent flows are analyzed. Supported by the National Natural Science Foundation of China (Grant No. 10472081), the Program for New Century Excellent Talents in Universities of Ministry of Education of China, and Tianjin Science and Technology Development Plan (Grant No. 06TXTJJC13800)  相似文献   

19.
Recently Brouwers [Dissipation equals production in the log layer of wall-induced turbulence. Phys Fluids. 2007;19:101702] carried out an asymptotic analysis using the RANS based turbulence energy transport equation and showed that the energy dissipation equals its production in the inertial layer of wall-induced turbulence. Assuming log-law profile to the mean velocity, pressure, viscous and energy diffusion terms were estimated and shown to be negligibly small compared to the production and dissipation terms thereby proving local equilibrium. However, based on scale relations Tennekes and Lumley [A first course in turbulence. Cambridge (MA): MIT Press; 1994] have already established that the pressure and energy diffusion terms appearing in the energy transport equation are of the same order of magnitude especially in the inertial layer thus leading to a contradiction. Hence we have attempted here to re-estimate the turbulence energy budgets in a different way by invoking the Kolomogrov’s similarity hypotheses and (4/5)th law. Magnitudes of pressure and energy diffusion terms are determined explicitly and found to match well with the DNS data. The striking point of the present analysis is that no prior assumption is enforced on the mean velocity profile. Further, two main advantages of the present study are, (i) reasonable estimates for both the diffusion terms are obtained explicitly that were unavailable before and (ii) these estimates help us to tweak the production/dissipation terms to reflect the influence of turbulent diffusion mechanisms without the necessity to model them as in the case of elliptic relaxation and Reynold stress RANS models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号