共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
4.
5.
为揭示高表面张力的铝液滴撞击弯曲壁面的铺展机制,基于流体体积方法建立了铝液滴撞壁的数值计算模型,通过分析韦伯数(We)、奥内佐格数(Oh)以及壁面曲率(k)对液滴碰壁过程的影响规律,探索了铝液滴在曲面上的铺展特性与流动机理.研究结果表明:随着We的增大,铝液滴的撞壁行为模式依次表现为黏附、反弹以及破碎射流;由于铺展和回缩过程都会产生能量耗散,因此液滴回缩速度要小于其铺展速度.在撞壁过程中,接触点处产生了两次压力峰和速度峰,分别出现在撞壁时刻与即将反弹时刻.随着k的增加,液滴的最大铺展系数不断增加,且在平面上最小,但曲率变化对液滴铺展速度的影响并不突出.基于计算结果,通过引入k对铺展系数预测模型作出了修正.同时,基于能量守恒定律,对铝液滴在曲面上的流动过程进行分析,建立了多因素耦合作用下的铺展系数计算模型.与撞击平面相比,液滴在曲面上的铺展系数不仅与液滴的运动参数、壁面的润湿性有关,还与壁面曲率与液滴曲率之比有关.本文提出的两种预测模型均能为实际的工程应用提供参考依据. 相似文献
6.
7.
8.
9.
10.
热声发动机的起振过程是一个产生并维持自激振荡的过程, 研究热声自激振荡机理有助于进一步了解热声效应的实质. 根据热声网络理论, 建立了驻波热声发动机的整机网络. 将热声网络比拟成电网络, 利用厄米特式计算了输入热声网络的视在功流, 功流平衡对应自激, 在角频率虚部为零的情况下计算了热声发动机的阈值温度和运行频率. 结果表明, 计算值与实验值符合得较好, 充气压力与阈值温度和运行频率的耦合关系大致相同. 所得结论有助于进一步探究热声效应机理以及热声发动机系统的优化设计. 相似文献
11.
12.
13.
由于碰撞壁面后液滴内部流动的复杂性, 以及气-液-固三相间的相互作用, 对液滴碰撞壁面形态变化的数学理论研究有较大的难度, 因此所见者多为实验和数值模拟. 本文通过对液滴受力状态的分析, 得到了惯性力、黏性力和表面张力带经验系数的表达式, 并进一步建立了液滴碰撞壁面振荡模型, 得到了液滴铺展半径的振荡表达式, 以及表面张力、黏性系数等参数对液滴铺展的影响. 最后通过与液滴衰减振荡数值模拟结果的对比, 确定了液滴振荡模型中的修正系数, 验证了模型的可行性.
关键词:
液滴碰撞
振荡
铺展半径/高度
数值模拟 相似文献
14.
A numerical and analytical model is proposed for the impact of a hollow melt droplet onto the surface of a solid polished
substrate. The model is based on integral laws of the mass and energy conservation of the colliding droplet, it accounts for
capillary and adhesion properties of the melt. The main parameters of the high-velocity deformation of a hollow particle have
been computed: the variation of its height, shell thickness, and the contact spot diameter up to the moment of the spreading
droplet solidification as well as the pressure variation inside the droplet until the moment of the shell rupture. The critical
pressure value at which the rupture occurs is estimated by a formula characterizing the spherical shell strength. Quite a
fair agreement of the computed values of the final diameter of the splat of a spread and solidified droplet with the data
of physical experiment is shown.
The work was financially supported by the Russian Foundation for Basic Research (Grant No. 06-01-00080) as well as within
the framework of the Interdisciplinary Integration Project of SB RAS No. 90 for the years 2006–2008 “Scientific Fundamentals
of the Creation of Multi-Layer Nano-Structural Coatings and Interfaces in Heterogeneous Materials for Operation in the Fields
of Extreme External Effects”. 相似文献
15.
ZENG XiPing WU JinBo LI ShunBo CHAU YeungYeung HE GuangHong WEN WeiJia YANG GuoZhen 《中国科学:物理学 力学 天文学(英文版)》2014,57(5):829-835
The confinements of water can be divided into two main categories,namely,the confinements on surface or interface and the confinements in bulk water.By adding ions or applying electric field,the intensity and distribution of the hydrogen bonds can be greatly affected.These are collectively known as confinement on water surface or interface,which has potential applications in life science and industries involving evaporation control.Confined bulk water could be found everywhere in nature,such as in granular and porous materials,macromolecules and gels,etc.The investigation of the physical properties and the transports of the confined bulk water will contribute to understanding certain types of life activities such as the water transport in plant and in new application of extracting the shale oil and water. 相似文献
16.
Droplets tethering on fibers has become a well established technique for conducting droplet combustion experiments in microgravity conditions. The effects of these supporting fibers are frequently assumed to be negligible and are not considered in the experimental analysis or in numerical simulations. In this work, the effect of supporting fibers on the characteristics of microgravity droplet combustion has been investigated numerically; a priori predictions have then been compared with published experimental data. The simulations were conducted using a transient one-dimensional spherosymmetric droplet combustion model, where the effect of the supporting fiber was implicitly taken into account. The model applied staggered convective flux finite volume method combined with high-order implicit time integration. Thermal radiation was evaluated using a statistical narrow band radiation model. Chemical kinetics and thermophysical properties were represented in rigorous detail. Tether fiber diameter, droplet diameter, ambient pressure and oxygen concentration were varied over a range for n-decane droplets in the simulations. The results of the simulations were compared to previously published experiments conducted in the Japan Microgravity Center (JAMIC) 10 second drop tower and the NASA Glenn Research Center (GRC) 5.2 second drop tower. The model reproduces closely nearly all aspects of tethered n-decane droplet burning phenomena, which included droplet burning history, transient and average burning rate, and flame standoff ratio. The predictions show that the presence of the tethering fiber significantly influences the observed burning rate, standoff ratio, and extinction. 相似文献
17.
18.