首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The complex, K2.5Na2NH4[Mo2O2S2(cit)2]·5H2O (1), was obtained by crystallization from a solution of (NH4)2MoS4, potassium citrate (K3cit) and hydroxyl sodium in methanol and water under an atmosphere of pure nitrogen at ambient temperature. The crystals are triclinic, space group P1¯, a = 7.376 (3)Å, b = 14.620 (2) Å, c = 14.661 (1) Å, α = 71.10 (1)°, β = 81.77 (1)°, γ = 78.27(2)°, R = 0.0584 for 2545 observed (I > 2σ (I)) reflections. Single crystal structure analysis reveals that citrate ligand coordinated to molybdenum atom through two carboxylato oxygens and one deprotonated hydroxyl oxygen together with two bridging sulfur atoms and a terminal oxygen atom completes distorted coordination octahedron around each molybdenum atom. Principal dimensions are Mo = O1, 1.707 Å (av); Mo-Sb, 2.341 Å (av); Mo-O(hydroxyl), 2.021 Å (av); Mo-O(α-carboxyl), 2.1290 Å (av) and Mo-O(β-carboxyl), 2.268(av) Å. IR spectrum is in agreement with the structure.  相似文献   

2.
《Solid State Sciences》1999,1(4):189-198
The complex, K6[Mo2O5(cit)2]·5H2O was obtained by crystallization from reaction of [Et4N]3[Mo2FeS8O2 and potassium citrate (K3cit) in methanol and water under an atmosphere of pure nitrogen at ambient temperature. The complex is triclinic, space group P1, a = 11.843(8) Å, b = 13.717(8) Å, c = 10.287(5) Å, α = 108.11(4) °, β = 99.42(5) (1) °, γ = 66.52(4) °, R = 0.034 for 4510 observed (I > 3 σ (I)) reflections. Single crystal structure analysis reveals that citrate ligand coordinated to molybdenum atom through two carboxylato oxygens and one deprotonated hydroxyl oxygen together with one bridging oxygen atom and two terminal oxygen atoms completes distorted coordination octahedron around each molybdenum atom. IR spectra are in agreement with the structure.  相似文献   

3.
Thiocomplexes of Molybdenum. Crystal Structure of a Mixed Single Crystal (PPh3Me)2[Mo2Br6(NO)4]/(PPh3Me)2[Mo2Br6S2(NO)2] The reactions of (PPh4)2MoS4 with MoBr4 and MoBr2(NO)2 resp. lead to the binuclear complexes (PPh4)2[S2MoS2MoBr3(SMe2)] and (PPh4)[S2MoS2MoBr2(NO)2], in which the molybdenum atoms are linked by sulfido bridges. The preparation of (PPh3Me)2S6 and (AsPh4)2S7 from Na2S4 and PPh3MeBr, and AsPh4Cl, respectively, in ethanol solution is described. Disulfido briges are a feature of (AsPh4)2[Mo2Br6(S2)2(SMe2)2], which is obtained from MoBr4(SMe2)2 and (AsPh4)2S7. Mixed single crystals containing 2/3 (PPh3Me)2[Mo2Br6(NO)4] and 1/3 (PPh3Me)2[Mo2Br6S2(NO)2] are formed in the reaction of MoBr2(NO)2 with (PPh3Me)2S6, as shown by X-ray single crystal structure determination. The compound crystallizes monoclinic in the space group C2/c (Internat. Tab. Nr. 15) with four formula units per unit cell (2351 independent observed reflexions, Rw = 0.037). The cell parameters are a = 1603 pm, b = 1549 pm, c = 1863 pm; β = 92.2°. The complexes consist of PPh3Me cations and the dimeric anions [Mo2Br6(NO)4]2? and [Mo2Br6S2(NO)2]2? which occur in the ratio 2:1. In these the molybdenum atoms are connected via MoBr2Mo bridges of slightly different lengths (Mo? Br 265 pm and 267 pm) forming a controsymmetric double octahedron. All molybdenum atoms have two terminal bromo ligands with Mo? Br bond lengths of 258 pm and 260 pm; in the [Mo2Br6(NO)4]2? ion each molybdenum has two covalently bonded nitrosyl groups on cis-position with Mo? N bond lengths of 183 pm. In the [Mo2Br6S2(NO)2]2? ion one of the two nitrosyl groups at each metal atom is substituted by a terminal sulfido ligand with a Mo? S bond length of 240 pm. The i.r. spectra are reported.  相似文献   

4.
The complexes [Mo16O16S16(OH)16(abtc)(H2O)2]4? (1) and [Mo16O16S16(OH)16(abtc)2(H2O)2]8? (2) (abtc4? = 3,5-dicarboxyl-(3′,5′-dicarboxyazophenyl)benzene) have been obtained from the condensation of the [Mo2O2S2]2+ cluster in the presence of abtc4? ligand. Compounds 1 and 2 were characterized structurally, revealing host–guest architectures containing one or two encapsulated abtc4? ligands. In 1, the guest abtc4? moieties appears firmly coordinated to the ring by the four carboxylato groups, giving a nearly planar conformation which fall in the plane of the sixteen Mo atoms of the inorganic macrocycle. Conversely, the two equivalent abtc4? ligands in 2 exhibit an asymmetric mode of coordination, where two carboxylato groups are coordinated to the {Mo16} ring and the two remaining hang outer the open cavity. Anions 1 and 2 have been characterized by 1H NMR in solution, revealing for 1 an enhancement of the symmetry likely due to some molecular dynamic, while the compound 2 easily converts into 1 with a consecutive release of one abtc4? ion. Furthermore, a solution study showed that the formal linkage of the two isophatlate moieties through an azo {N=N} unit brings a drastic stability increase of the host–guest assembly compared to the bis-isophtalate containing {Mo16} ring. Synthesis, elemental analysis, and infrared spectra are also supplied.  相似文献   

5.
Thiochloro Anions of Molybdenum (IV). Crystal Structure of (NEt4)3[Mo33-S)(μ-S2)3Cl6]Cl μ CH2Cl2. Crystal Structure, Magnetic Properties, and EPR-Spectrum of (NEt4)2 [Mo2(μ-S2)(μ-Cl)2Cl6] From molybdenum pentachloride and tetraethylammonium hydrogensulfide in CH2Cl2 an insoluble product of composition (NEt4)2[Mo2S3Cl9] was obtained along with a brown solution, from which (NEt4)2[Mo2(S2)Cl8] was crystallized. The insoluble product and NEt4Cl react in CH2Cl2 to yield, among others, (NEt4)3[Mo3(S)(S2)3Cl6]Cl · CH2Cl2. The latter crystallizes in the orthorhombic space group Pnma, a = 2495.8, b = 1501.2, c = 1295.6 pm, Z = 4. According to the crystal structure determination (3070 observed reflexions, R = 0.049) the [Mo3(S)(S2)3Cl6]2? ion consists of an Mo3 triangle with Mo? Mo bonds, each side of the triangle is bridged by disulfido groups and one sulfur atom is capped over the Mo3 triangle; the single chloride ion is looseley associated to three S atoms. (NEt4)2[Mo2(S2)Cl8] also crystallizes in the space group Pnma, a = 1425.6, b = 1129.9, c = 2004.7 pm, Z = 4; structure determination with 1703 observed reflexions, R = 0.061. In the [Mo2(S2)Cl8]2? ion the Mo atoms are bridged via one disulfido group and two chlorine atoms. There is a Mo? Mo bond, but according to the magnetic properties and the EPR spectrum each Mo atom still possesses one unpaired electron.  相似文献   

6.
The black crystal of (NH4)[Mo2(S2)6]* 8/3 H2O belongs to the orthorhombic system, space group D32-P22121, with a = 12.064(6), b = 12.534(4), c = 19.558(9)Å, V =2957(3)Å3, Z = 4 and Dc = 2.23g.cm?3. The intensity data were collected on a Syntex R3 four-circle diffractometer. The structure was solved by Patterson method and direct method, the light atoms (except H atoms) were obtained from ΔF syntheses. The structure was refined by least-squares with anisotropic thermal parameters. The values of R and Rw were 0.092 and 0.072 respectively. The crystal structure contains discrete dimeric cluster [Mo2(S2)6]2? ions, NH4+ cations and H2O molecules. There are two crystallographically independent [Mo2S2)6]2? ions in the crystal, one locates on general position [Figure 1(a)], the other locates on two-fold axis [Figure 1(b)]. It contains one and a half [Mo2S2)6]2? ions in an asymmetric unit. In [Mo2S2)6]2? each Mo is coordinated side on by four S22? groups in a distorted dodecahedral arrangement, two of which are bridging and the other two are terminal. The Mo? S bond length is 2.441 Å (mean), and S? S is 2.049 Å (mean). The Mo? Mo distance is 2.784 Å (mean), which is to be regarded as a single bond length. The formal oxidation state of Mo is five, it is probably a mixed valence MoIV? MoVI, and so shows a remarkable deep colour.  相似文献   

7.
Hydrocarbon solutions of Mo2(O—t-Bu)6 and PF3 (2 equiv) yield Mo4F4(O—t-Bu)8, I, and PF2(O—t-Bu). Compound I contains a bisphenoid of molybdenum atoms with two short MoMo distances, 2.26 Å, and four long MoMo distances, 3.75 Å, corresponding to localized MoMo triple bonding and non-bonding distances, respectively. The tetranuclear compound may be viewed as a dimer, [Mo22-F)2(O-t-Bu)4]2, and addition of PMe3 to hydrocarbon solutions of I yields Mo2F2(O—t-Bu)4(PMe3)2, II, which contains an unbridged MoMo triple bond of distance 2.27 Å. Each molybdenum atom is coordinated to two oxygen atoms, one fluorine atom and the phosphorus atom of the PMe3 ligand in a roughly square planar manner. The overall central Mo2O4F2P2 skeleton has C2 symmetry and NMR studies (1H, 19F and 31P) are consistent with the maintenance of this type of structure in solution. Infrared and electronic absorption spectral data are reported. These are the first compounds containing fluorine ligands attached to the (MoMo)6+ unit.  相似文献   

8.
Peripheral Bonding of Mercury(II) Iodide to Trinuclear Molybdenum-Sulfur-Dithiophosphinato Clusters: [Mo3S4(R2PS2)4HgI2] (R = Et, Pr) Reaction of Mo3S4(R2PS2)4 1 (a : R = Et, b : R = Pr) with HgI2 in THF yields the diamagnetic title complexes [Mo3S4(R2PS2)4HgI2] 3 . The crystal structure of [ 3a (H2O)] · 2 CH2Cl2 shows the complexes to consist of a triangular array of Mo atoms which are bridged by μ2? S atoms and capped by a μ3? S atom. Each of the Mo atoms is chelated by a dithiophosphinato ligand Et2PS2? and in addition two Mo atoms are bridged by a Et2PS2? ligand while the H2O molecule is bonded weakly to the third Mo atom. Thus, all Mo atoms reveal a distorted octahedral coordination sphere. HgI2 is ?peripherally”? bonded to the cluster via two S atoms, one of which belongs to a chelating ligand and the other one to the bridging ligand. Space group P1 , lattice constants a = 12.157(2), b = 15.284(3), c = 16.049(3) Å, α = 115.56(1), β = 107.35(1), and γ = 94.62(1)°; Z = 2, dcalc = 2.23 mg/mm3; 4 236 observed reflections, R = 0.068. In organic solvents complexes 3 are strong electrolytes. VT-31P NMR data suggest a stepwise dissociation of 3 with formation of [Mo3S4(R2PS2)3] +[(R2PS2)HgI2]? and elimination of the bridging ligand from the cluster.  相似文献   

9.
The binuclear molybdenum(II) anion [Mo2Cl8]4? acts as a template for the self-condensation of 2-aminobenzaldehyde. The dimolybdenum unit is retained in the molybdenum(IV) product, [Mo2(A)2(H2O)4+.4Cl?, where A is a macrocyclic tetradentate ligand containing two Schiff base nitrogen donors. The product forms as two isomers, whose 1H nmr spectra are discussed.  相似文献   

10.
(pyH)3Mo2Br7(H2O)2 (pyH = Pyridinium cation) was prepared from the solution of (NH4)5Mo2Cl9 · H2O in 1:1 HBr by the addition of pyHBr. The compound has monoclinic unit cell: P 21/n with a = 10.250(4), b = 11.891(4), c = 11.971(3) Å and β = 112.86(2)°. Z = 2, D calcd. = 2.54, D obsd. = 2.52(2) g cm?3. The structure has been refined to the unweighted and weighted residuals of 7.8 and 8.7%. The structure contains Mo2Br6(H2O)22?, C5H6N+ and Br? ions. Short Mo? Mo distance 2.130(4) Å reflects the strong bond. H2O is coordinated to molybdenum at 2.19(3) Å. Distribution of H2O molecules and Br? ions around Mo2 is different from (picH)2Mo2X6(H2O)2 (X = Br, I) and determined by the two-fold axes perpendicular to the Mo? Mo direction and the plane defined by two H2O molecules and 2 Br atoms. Three independent Mo? Br distances are 2.574(4), 2.606(5) and 2.569(5) Å. Specific structure of the Mo2Br6(H2O)22? ion has no synthetic consequences and reaction with neutral aromatic nitrogen bases leads to the known Mo2Br4L4 compounds.  相似文献   

11.
Dithiolylium Chlorooxomolybdates(V): Synthesis and Crystal Structure of (C3Cl3S2)[MoOCl4] and (C3Cl3S2)[Mo2O2Cl7] The reaction of 3, 4, 5‐Trichlor‐1, 2‐dithiolylium chloride with MoOCl3 in dichlormethane under solvothermal conditions at 65 °C simultaneously yields the green tetrachlorooxomolybdate(V) (C3Cl3S2)[MoOCl4] and the yellow‐brown heptachlorodioxodimolybdate(V) (C3Cl3S2)[Mo2O2Cl7]. The crystal structures of both compounds contain nearly planar (C3Cl3S2)+ ions with a S—S bond length of 203 pm. The discrete [MoOCl4] ion in the structure of (C3Cl3S2)[MoOCl4] has the shape of a square pyramid with the oxygen atom at the apex. The molybdenum atom is displaced by 58 pm from the basal plane towards the oxygen atom. The [Mo2O2Cl7] ion in the structure of (C3Cl3S2)[Mo2O2Cl7] has the form of a face‐sharing double octahedron. It is formally composed of a [MoOCl4] ion and a MoOCl3 molecule connected by one symmetrical and two unsymmetrical chloro bridges. The molybdenum atoms placed in the centers of such connected octahedra are 357 pm apart, indicating no Mo—Mo bond.  相似文献   

12.
Crystallization from a ThBr4/DMSO/(Et4N)2Mo3S7Br6 mixture in benzonitrile gave [Th2(µ-SO4)2×(DMSO)12]{[Mo3S7Br5(DMSO)]Br}2·2DMSO·PhCN. The complex has an ionic structure. In the [Th2(µ-SO4)2(DMSO)12]4+ centrosymmetric binuclear cation, the metal atoms are bound by two sulfate bridges and are coordinated by DMSO oxygen atoms, the coordination polyhedron of thorium(IV) being a tricapped trigonal prism (c.n. 9). The [Mo3S7Br5(DMSO)]cluster anion and the bromide ion form an ion pair with Sax...Br short contacts, and the DMSO molecule is coordinated to one of the molybdenum atoms via the oxygen atom. The voids of the structure are filled with DMSO and PhCN solvate molecules, the latter being disordered over two positions related by an inversion center.Original Russian Text Copyright © 2004 by M. N. Sokolov, O. A. Gerasko, S. F. Solodovnikov, and V. P. FedinTranslated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 3, pp. 516–521, May–June 2004.  相似文献   

13.
The interaction of molybdenum hexacarbonyl with ammonium pyrrolidinedithiocarbamate in warm dimethylsulfoxide solution gives not the expected complex [NH4][Mo(CO)4(S2CN(CH2)4)] but the molybdenum(V) dimer, di-μ-sulfido-bis[oxo(pyrrolidinedithiocarbamato)molybdenum(V)]. The structure of this oxidized product [MoO(S2CN(CH2)4)S]2 (1) was determined by single-crystal X-ray diffraction analysis. The crystals are triclinic, space group PI with two molecules in a unit cell of dimensions a = 8.775(1), b = 16.592(2), c = 6.661(1) Å, α = 97.67(1), β = 97.89, γ = 80.23(1)°. The structure was solved by the heavy-atom method and refined by block-diagonal least-squares calculations to R = 0.037 for 3772 observed data. In the binuclear complex the two Mo atoms are bridged via two S atoms [Mo-S 2.303-2.317(1) Å]. Each Mo atom is also coordinated by a terminal O atom [1.688(4) and 1.682(4) Å] and two S atoms from the bidentate ligand [Mo-S 2.455-2.475(1) Å]. The geometry around the metal atoms is distorted square pyramidal.  相似文献   

14.
The reaction of the thiocarbamoyl‐molybdenum complex [Mo(CO)22‐SCNMe2)(PPh3)2Cl] 1 , with EtOCS2K and C4H8NCS2NH4 in dichloromethane at room temperature yielded the seven coordinated ethyldithiocarbonate thiocarbamoyl‐molybdenum complex [Mo(CO)22‐S2COEt)(η2‐SCNMe2)(PPh3)] 2 , and the dithiocarbamate thiocarbamoyl‐molybdenum complex [Mo(CO)22‐S2CNC4H8)(η2‐SCNMe2)(PPh3)] 3 . The geometry around the metal atom of compounds 2 and 3 are capped octahedrons as revealed by X‐ray diffraction analyses. The thiocarbamoyl and ethyldithiocarbonate or pyrrolidinyldithiocarbamate ligands coordinate to the molybdenum metal center through the carbon and sulfur and two sulfur atoms, respectively. Structure parameters, NMR, IR and Mass spectra are in agreement with the crystal chemistry of the two compounds.  相似文献   

15.
The novel oxothiomolybdate Mn2(tren)3[Mo2O2S6]2·1.3H2O [tren = tris(2-aminoethyl)amine], synthesized under solvothermal conditions, consists of one-dimensional novel [Mn2(tren)3] n 4+ chains and discrete [Mo2O2S6]2– anions. There are two crystallographically independent chains and four [Mo2O2S6]2– anions in the asymmetric unit. Each Mn atom in the cationic chains is sixfold coordinated by N atoms of the chelating tren molecules. Two of the four crystallographically independent Mn atoms are tridentately coordinated by two tren molecules, whereas the other two are coordinated tetradentately by one tren molecule and monodentately by the remaining primary amino groups from the tren molecules that act as tridentate ligands. The tren ligand bonding modes lead to the formation of the polymeric [Mn2(tren)3] n 4+ chain. One of the four Mn atoms is in the unusual trigonal prismatic coordination state with six surrounding N atoms.  相似文献   

16.
A novel chain molybdenum compound, {[Mo2O6(C6H5NO2)]·H2O}n, which was synthesized under hydro­thermal conditions, consists of an infinite rail‐like chain formed by molybdenum oxide units linked by zwitterionic nicotinic acid ligands. Each Mo atom is coordinated octahedrally by six O atoms and the MoO6 octahedra are linked to one another via edge‐sharing to produce a zigzag polymeric chain, with nicotinic acid ligands located, alternately, on each side of the rail‐like chain plane.  相似文献   

17.
Reaction of heterometal cuboidal clusters [Mo3(MCl)S4(H2O)9]3+ (M = Ni, Pd) with PhSO2Na in aqueous HCl leads to the substitution at Ni or Pd to give the [Mo3(M(PhSO2))(H2O)9—xClx](3—x)+species, isolated as supramolecular adducts with cucurbituril (Cuc) [Mo3(Ni(PhSO2))S4Cl1.17(H2O)7.83][Mo3(Ni(PhSO2))S4Cl2.22(H2O)6.78]Cl2.61 · Cuc · 15H2O ( 1 ) and [Mo3(Pd(PhSO2))S4Cl1.12(H2O)7.88][Mo3(Pd(PhSO2))S4Cl2.29(H2O)6.71]Cl2.59 · Cuc · 11H2O ( 2 ), respectively. Crystal structure of 1 and 2 was determined, revealing that the PhSO2 is coordinated via its sulfur atom (Ni — S 2.182 Å, Pd — S 2.305 Å). The structure of these isostructural compounds is built from triple aggregates {(cluster)(Cuc)(cluster)} united into zigzag chains via hydrogen bonds between coordinated PhSO2 and H2O ligands.  相似文献   

18.
Summary A binuclear oxo MoV hypophosphite of composition [Mo2O4(H2PO2)2(H2O)2], is prepared by direct reduction of MoVI oxide hydrate (MoO3·H2O) with hypophosphorus acid in an argon atmosphere, and characterised by i.r., and electronic spectra, magnetic susceptibility and cyclic voltammetry measurements.1H and31Pn.m.r., x-ray diffraction and thermal analysis data contribute to its molecular structure elucidation, and a dioxobridged dioxo MoV with bidentate hypophosphite ion and water molecule completing the octahedral coordination around each Mo atom is proposed.  相似文献   

19.
The title compound was prepared by the reaction of Mo_3S_4(dtp)_4(H_2O)[ctp=S_2P(OEt)_2]with NaOAc·3H_2O and C_4H_8NCS_2NH_4.Crystallographic data:[Mo_3(μ_3-S)(μ-S)_2(μ-OAc)-(S_2CNC_4H_8)_3(O)_2]·0.5CH_2CI_2·2H_2O,Mr=980.18,triclinic,space group P,α=12.360(3),b=16.653(6),c=9.206(2)A,α=101.97(2),β=108.32(2),γ=86.14(3)°.V=1759.6(9)A~3,Z=2,Dc=1.85 g/cm~3,F(000)=962,μ(Mo K_α)=16.53 cm~(-1).Final R=0.044 for 4301 reflections with I≥3σ(I).This compoundmay be regarded as a mixed-valent trinuclear molybdenum cluster{Mo_2(V)Mo(Ⅳ)(μ_3-S)(μ-S)_2-(μ-OAc)(S_2CNC_4H_8)_3(O)_2}.The Mo-Mo distances are 2.783(1),2.833(1)and 3.374(2)A in the Mo_3non-equilateral triangle and there exist only two Mo-Mo bonds.The cluster was obtained by oxi-dation and ligand substitution of{Mo_3(μ_3-S)(μ-S)_3[μ-S_2P(OEt_2)][S_2P(OEt)_2]_3(H_2O)}.  相似文献   

20.
The title compounds, [Mo(C2H4NO2)2(NO)2], (I), and [Mo(C2H6NS)2(NO)2]·CH3CN, (II), contain distorted octahedral complexes in which the monoanionic N,S‐ and N,O‐bidentate ligands coordinate the molybdenum centres in different modes. The anionic O atoms of the glycinate ligands in (I) are coordinated trans to the nitrosyl ligands and the amine N atoms are located trans to each other, whereas in (II) the anionic S atoms are coordinated trans to each other and the amine N atoms are located trans to the nitrosyl ligands. Each compound has a single complete complex in the asymmetric unit on a general position. Six N—H...O contacts with N...O distances of less than 3.2 Å are observed in (I) between the amine groups and the nitrosyl and carboxylate O atoms. In the 1:1 solvate (II), the acetonitrile molecule forms short N—H...N contacts (N...N < 3.2 Å) between the solvent N atoms and one of the amine H atoms. In addition, three weak intermolecular N—H...S interactions (N...S > 3.3 Å) contribute to the stabilization of the structure of (II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号