共查询到20条相似文献,搜索用时 46 毫秒
1.
采用两步法制备Si基Ag/ZnO双层结构薄膜,研究了Ag覆盖层的厚度和生长温度T对ZnO近带边发光强度的影响.对于厚度为100 nm的ZnO薄膜,发现Ag覆盖层的最佳厚度仅为8 nm,此时双层薄膜相对于单层ZnO薄膜的发光增强因子η达到最大值8.1;同时还发现,在最佳Ag层厚度下,生长温度T≥300 ℃时生长Ag所获Ag/ZnO双层薄膜的ZnO发光强度比生长温度T≤200 ℃时生长的双层薄膜样品大一倍以上,η ≈ 18.结合对双层薄膜表关键词:表面等离子体共振复合薄膜 相似文献
2.
3.
4.
5.
为了解决传统的强度检测型波导激励的表面等离子体共振传感器灵敏度不高的缺点,研究平面波导激励的介质膜-金属-被测介质的可激发修正的长程表面等离子体波结构。采用离子交换的方法制备折射率可用费米函数拟合的平面波导,研究了离子交换时间对平面波导的模数及等效折射率等特性的影响,为激励波导的优化设计提供有效依据。采用制备的平面波导激励介质膜-金属-被测介质的非对称结构,研究金属材质、介质膜厚和金属膜厚等因素对修正的长程表面等离子体波特性的影响,对被测溶液的折射率进行检测。实验结果表明,其灵敏度为传统的强度检测型表面等离子体共振传感器的6倍,并且具有较好的线性关系。 相似文献
6.
表面等离子体是沿着导体表面传播的波,当改变金属表面结构时,表面等离子体激元(surface plasmon polaritons,SPPs)的性质、色散关系、激发模式、耦合效应等都将产生重大的变化.通过SPPs与光场之间相互作用,能够实现对光传播的主动操控.表面等离子体光子学(plasmonics)已成为一门新兴的学科,它的原理、新颖效应以及机制的探究,都极大地吸引研究者们的兴趣.SPPs具有广阔的应用前景,例如,应用于制作各种SPPs元器件和回路,制作纳米波导、表面等离子体光子芯片、耦合器、调制器和开关,应用于亚波长光学数据存储、新型光源、突破衍射极限的超分辨成像、SPPs纳米光刻蚀术、以及生物光学(作为传感器和探测器).文章介绍了表面等离子体光子学原理、新颖效应和物理机制,并简述若干应用。 相似文献
7.
表面等离子体是沿着导体表面传播的波,当改变金属表面结构时,表面等离子体激元(surface plasmon polaritons, SPPs) 的性质、色散关系、激发模式、耦合效应等都将产生重大的变化.通过SPPs与光场之间相互作用,能够实现对光传播的主动操控.表面等离子体光子学(plasmonics)已成为一门新兴的学科,它的原理、新颖效应以及机制的探究,都极大地吸引研究者们的兴趣.SPPs具有广阔的应用前景,例如,应用于制作各种SPPs元器件和回路,制作纳米波导、表面等离子体光子芯片、耦合器、调制器和开关,应用于亚波长光学数据存储、新型光源、突破衍射极限的超分辨成像、SPPs纳米光刻蚀术、以及生物光学(作为传感器和探测器).文章介绍了表面等离子体光子学原理、新颖效应和物理机制,并简述若干应用. 相似文献
8.
利用热丝辅助双偏压氢等离子体对化学气相沉积金刚石薄膜进行了纳米尺度上的表面改装,制造出锥状金刚石列阵.金刚石薄膜内在的柱状结构使氢离子在刻蚀薄膜时产生非均匀的刻蚀速率,对锥状表面的形成起着重要作用.另一方面,溅射出的含碳粒子会发生二次沉积,最终的特征表面形貌取决于刻蚀与含碳基团再沉积之间的相互竞争.栅极的使用影响基底区域放电的伏安特性,改变栅极电流可以对形成的金刚石特征表面结构进行有效调节.在处理过程中少量掺入甲烷,提高了金刚石表面附近的含碳基团浓度,促进二次成核,进而诱发均匀分布的锥状列阵.关键词:等离子体表面金刚石薄膜 相似文献
9.
理论研究了平面电磁波通过n型重掺GaAs薄膜的透射谱.当GaAs薄膜两表面刻上亚波长的周期性沟槽结构时,透射谱在中红外波段出现了异常的透射增强现象.把这一现象归因于表面等离子体模式和波导模式的耦合.通过优化结构参数可以得到最大的透射效率.此外,发现随着掺杂浓度的升高,透射谱线中的透射峰逐渐向高频方向移动,最优化后透射峰值随掺杂浓度的升高而逐渐降低.这是由于掺杂浓度的改变,导致了不同的等离子体频率和电子碰撞频率,从而影响了激发模式和薄膜对电磁波的吸收.关键词:表面等离子体掺杂半导体增强透射掺杂调制 相似文献
11.
Based on the finite difference time domain method,we investigated theoretically the optical properties and the plasmonic interactions between a gold film perforated with periodic sub-wavelength holes and a thin gold film.We showed that the plasmon resonant energies and intensities depend strongly on the thicknesses of the two films and the lattice constant.Based on the distributions of normal electric field component E z,tangential electric field component E y and total energy,we showed that the optical transmission is due to the collaboration of the localized waveguide resonance,the surface plasmon resonance and the coupling of the flat-surface plasmon of the two layers. 相似文献
12.
13.
采用离散偶极子近似方法计算了内嵌圆饼空心方形银纳米结构的消光光谱以及其近场的电场强度分布,并进一步与空心方形纳米结构的消光光谱和表面电场做比较.结果表明,在耦合作用下内嵌圆饼空心方形银纳米结构不仅产生了新的共振模式,而且新的共振模式在传统表面增强拉曼散射的激发波长范围内,进而可以弥补由于实验上运用纳米切片法所制备的空心方形纳米结构尺寸较大导致其共振吸收峰在远红外波长范围的不足.此外,可以通过改变内嵌圆饼空心方形银纳米结构的形貌参数调节其表面等离子体共振峰的共振波长,以满足在表面增强拉曼散射、生物分子或化学分子探测上的应用. 相似文献
14.
提出了一种基于定向耦合效应和表面等离子共振效应的交叉敏感分离的磁场温度传感结构.在光子晶体光纤的一个特定空气孔中填充磁流体,利用磁流体的磁光效应和定向耦合效应形成磁场传感通道;在垂直方向的另一空气孔的内壁镀金纳米薄膜并填充甲苯液体,利用甲苯的温敏效应和表面等离子共振效应形成温度传感通道.对应输出谱出现两个损耗峰,测量损耗峰位置可以间接测出磁场强度和温度变化.通过理论计算()和结构优化,在90—270 Oe1 Oe=10~3/(4π) A/m范围内,磁场强度的灵敏度最高可达1.16 nm/Oe;在25—60?C范围内,温度的灵敏度可达-9.07 nm/?C.虽然填充的两种液体的折射率都受环境温度的影响,但通过建立灵敏度系数矩阵,可以消除磁场强度与温度的交叉敏感,实现磁场温度双参量的高灵敏度检测. 相似文献
15.
We report theoretical studies on the plasmon resonances in linear Au atomic chains by using ab initio time-dependent density functional theory. The dipole responses are investigated each as a function of chain length. They converge into a single resonance in the longitudinal mode but split into two transverse modes. As the chain length increases, the longitudinal plasmon mode is redshifted in energy while the transverse modes shift in the opposite direction (blueshifts). In addition, the energy gap between the two transverse modes reduces with chain length increasing. We find that there are unique characteristics, different from those of other metallic chains. These characteristics are crucial to atomic-scale engineering of single-molecule sensing, optical spectroscopy, and so on. 相似文献
16.
为实现近红外波段表面等离子体共振(SPR)模式的分裂和移动, 同时提高光栅基SPR传感器的品质因数, 提出了一种由双金属光栅构成的新型复合结构光栅, 并研究了其气体传感特性. 运用有限时域差分算法对该结构进行了数值模拟, 发现由复合金属光栅激发的SPR出现模式分裂的现象. 通过增大双金属光栅阵列间的相对位移改变原结构的对称性, 导致复合金属光栅分裂的SPR模式朝相反方向移动. 当相对位移量进一步增大到双光栅合并成新的单一光栅时, 随光栅结构对称性的恢复, 分裂的两共振模式最后又重新合并为一个模式. 如果待测物的折射率为1.01≤na≤1.05, 当相对位移量为0时, 基于复合光栅结构气体传感器的折射率灵敏度为1207.5 nm/RIU, 且品质因数达到1290.7; 当相对位移量为100 nm时, 与双共振模式对应的折射率灵敏度分别为1205.0 nm/RIU和1210.0 nm/RIU, 品质因数分别为1295.4和762.3. 因此, 复合光栅SPR传感器具有超高品质因数的性能, 使得它在生物化学传感领域中有巨大的应用潜力. 相似文献
17.
基于表面等离子体共振和定向耦合的D形光子晶体光纤折射率和温度传感器 总被引:2,自引:0,他引:2
利用光子晶体光纤结构的灵活性和性能的优越性, 设计了一种基于D形光子晶体光纤的折射率和温度传感器. 在D形光子晶体光纤表面抛磨并镀上金纳米薄膜, 作为表面等离子体共振传感通道用来测量液体折射率; 在包层的一个空气孔中填充温敏液体甲苯, 作为定向耦合通道实现对温度的测量. 进一步的数值计算发现, 基于定向耦合效应的温度传感和基于表面等离子体共振的折射率传感相互独立, D形光子晶体光纤同时进行折射率和温度传感检测. 在各向异性的完美匹配层边界条件下利用全矢量有限元法对该传感器特性进行了数值研究, 发现D形光子晶体光纤的空气孔直径决定了定向耦合吸收峰的中心波长和温度传感的灵敏度, 金薄膜的厚度和D形结构的抛磨深度仅影响表面等离子体共振峰的相对强度. 结果表明: 该传感器在-10–80 ℃的温度范围内具有11.6 nm/℃的温度灵敏度, 在1.34–1.44折射率范围内折射率灵敏度最高可达26000 nm/RIU. 相似文献
18.
基于衍射原理和模耦合理论,提出了一种由亚波长介质光栅/金属-电介质-金属(metal-dielectric-metal,MDM)波导/周期性光子晶体组成的复合微纳结构.结合反射角谱深入分析了表面等离子激元的传输特性以及在固定波长下不同入射角时刻形成的双重Fano共振的产生机理.研究表明,双重Fano共振是由在亚波长介质光栅/MDM波导结合的上层结构中产生的独立可调的双离散态分别与在周期性光子晶体中形成的连续态相互耦合形成的.接着定量讨论了结构参数对双重Fano特性的影响,探究了双重Fano共振的演变规律.结果表明,改变结构参数可实现双Fano共振曲线和谐振角度之间的调谐,且在最优条件下,共振A区FR a和FR b的品质因数(figure of merit,FOM)可高达460.0和4.00×10~4,共振B区FR a和FR b的FOM值可高达269.2和2.22×10~4.该结构可为基于Fano共振的折射率传感器设计提供有效的理论参考. 相似文献
19.
The light–matter interaction is the crucial tool for the efficient light energy usage. Electrochemical potential control method can tune the coupling strength between the molecules and the light field. In this study, electrochemical surface-enhanced Raman scattering measurements have been carried out to clarify the detailed molecular behavior in the strong coupling regime. The Raman and fluorescence intensities from dye molecules in the strong coupling regime provided us the information about the change in the distance between the molecules and the metal surface in angstrom level. The detailed investigation of spectra revealed the origin for the potential dependence on the coupling strength. The present insight obtained in the current study would be valuable to understand the electrochemically controlled molecule–light interaction for photochemistry research. 相似文献