首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new Schiff base ligand named (E)‐2‐(((3‐aminophenyl)imino)methyl)phenol (HL) was prepared through condensation reaction of m‐phenylenediamine and 2‐hydroxybenzaldehyde in 1:1 molar ratio. The new ligand was characterized by elemental analysis and spectral techniques. The coordination behavior of a series of transition metal ions named Cr (III), Mn (II), Fe (III), Co (II), Ni (II), Cu (II), Zn (II) and Cd (II) with the newly prepared Schiff base ligand (HL) is reported. The nature of bonding and the stereochemistry of the complexes have been deduced from elemental analyses, IR, UV–Vis, 1H NMR, mass, electronic spectra, magnetic susceptibility and conductivity measurements and further their thermal stability was confirmed by thermogravimetric analysis (TG). From IR spectra, it was observed that the ligand is a neutral tridentate ligand coordinates to the metal ions through protonated phenolic oxygen, azomethine nitrogen and nitrogen atom of NH2 group. The existence, the number and the position of the water molecules was studied by thermal analysis. The molecular structures of the Schiff base ligand (HL) and its metal complexes were optimized theoretically and the quantum chemical parameters were calculated. The synthesized ligand and its complexes were screened for antimicrobial activities against bacterial species (Staphylococcus aureus and Bacillis subtilis, (gram positive bacteria)), (Salmonella SP., Escherichia coli and Pseudomonas aeruginosa, (gram negative bacteria)) and fungi (Aspergillus fumigatus and Candida albicans). The complexes were found to possess high biological activities against different organisms. Molecular docking was used to predict the efficiency of binding between Schiff base ligand (HL) and both receptors of Escherichia coli (3 T88) and Staphylococcus aureus (3Q8U). The receptor of Escherichia coli (3 T88) showed best interaction with Schiff base ligand (HL) compared to receptor of Staphylococcus aureu (3Q8U).  相似文献   

2.
A new series of hexa‐coordinated stable Ru(III) Schiff base complexes of the type [RuX(EPh3)(L)] (where X = Cl/Br; E = P/As; L = tetradentate N2O2 donor Schiff ligands) have been synthesized and characterized by elemental analysis, magnetic susceptibility measurement, FT‐IR, UV–vis, 13C{1H}‐NMR, ESR spectra, electrochemical and powder X‐ray diffraction pattern studies. The selective oxidation of alcohols to their corresponding carbonyl compounds occurred in the presence of N‐methylmorpholin‐N‐oxide (NMO), H2O2 and O2 atmosphere at ambient temperature as co‐oxidants and C? C coupling reactions. Further, these new Schiff base ligands and their Ru(III) complexes were also screened for their antibacterial activity against K. pneumoniae, Shigella sp., M. luteus, E. coli and S. typhi. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
New hexa‐coordinated binuclear Ru(III) Schiff base complexes of the type {[(B)2X2Ru]2L} (where B = PPh3 or AsPh3; X = Cl or Br; L = binucleating N2O2 Schiff bases) were synthesized and characterized by elemental analysis, magnetic susceptibility measurement, FT‐IR, UV–vis, 13C{1H}‐NMR, ESR at 300 and 77 K, cyclic voltammetric technique, powder X‐ray diffraction pattern and SEM. The new complexes were used as catalysts in phenyl–phenyl coupling reaction and the oxidation of alcohols to their corresponding carbonyl compounds using molecular oxygen atmosphere at room temperature. Further, the new Schiff base ligands and their Ru(III) complexes were also screened for their antibacterial activity against K. pneumoniae, Shigella sp., M. luteus, E. coli and S. typhi. From this study, it was found that the activity of the ruthenium(III) Schiff base complexes almost reaches the effectiveness of the conventional bacteriocide standards. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A Schiff base based on chitosan was synthesized through treatment of chitosan and p ‐dimethylaminobenzaldehyde in methanol solution. This biopolymeric Schiff base was used to prepare a new first row transition metal complex of Ni(II). The biopolymeric Schiff base and the synthesized tetra‐coordinated complex were characterized using Fourier transform infrared, 1H NMR and 13C NMR techniques. Then, an efficient synthetic method for functionalized 1H –pyrazolo[1,2‐b ]phthalazine‐5,10‐diones was successfully developed using one‐pot domino reaction of ninhydrin and malononitrile with 3‐arylamino‐5,5‐dimethyl‐2‐cyclohexenones catalysed by the chitosan‐based Schiff base complex of Ni(II) at room temperature. The advantages of this protocol are easy work‐up, short reaction times and high yield of products and also the catalyst can be readily isolated from the reaction mixture and recycled without loss of catalytic activity.  相似文献   

5.
A new Azo‐Schiff base ligand L was prepared by reaction of m‐hydroxy benzoic acid with (Schiff base B) of 3‐[2‐(1H–indol‐3‐yl)‐ethylimino]‐1.5‐dimethyl‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐ylamine. This synthesized ligand was used for complexation with different metal ions like Ni(II), Co(II), Pd(II) and Pt(IV) by using a molar ratio of ligand: metal as 1:1. Resulted compounds were characterized by NMR (1H and 13C), UV–vis spectroscopy, TGA, FT‐IR, MS, elemental analysis, magnetic moment and molar conductivity studies. The activation thermodynamic parameters, such as ΔE*, ΔH*, ΔS*, ΔG*and K are calculated from the TGA curves using Coats ‐ Redfern method. Hyper Chem‐8 program has been used to predict structural geometries of compounds in gas phase. The biological activities of Schiff base and its complexes had been tested in vitro against, two Gram positive bacteria (Bacillus subtillis and Staphylococcus aureus) and two Gram negative bacteria (Escherichia coli and Pseudomonas aeruguinosa).  相似文献   

6.
Three polymer‐Fe2+ complexes were synthesized from Fe2+ and poly(Schiff base)s. The poly(Schiff base)s were prepared from 2,2′‐diamino‐4,4′‐bithiazole (DABT) with phthalaldehyde, 5,5′‐methylenebis(salicylaldehyde) (MBSA) and terephthalaldehyde, respectively, and characterized by IR, XPS, NMR and ESR spectroscopy. The magnetic behavior of these polymer‐Fe2+ complexes was examined as a function of magnetic field strength and temperature (5–300 K), respectively. The hysteresis loops were also studied. Based on these results, several novel ferromagnets were obtained.  相似文献   

7.
New Schiff base derivatives, 2,2′‐[naphthalene‐2,7‐diylbis(oxy)]bis[N′‐substituted acetohydrazide] ( 4a‐m ) were synthesized by the acid catalyzed condensation of aryl/hetero aromatic aldehydes with 2,2′‐ [naphthalene‐2,7‐diylbis(oxy)]diacetohydrazide ( 3 ) under reflux temperature and ultrasonic irradiation. These Schiff base derivatives were confirmed through spectral characterization using IR, 1H NMR, 13C NMR and mass spectra. All the synthesized compounds were screened for their antioxidant activity using DPPH free radical scavenging method.  相似文献   

8.
A new, simple Cu2+ nano‐structure Schiff base complex in methanol medium has been synthesized by the ultrasonic method. Structure of the compound was confirmed by FT‐IR, GC‐Mass and other spectroscopic techniques. The copper oxide (CuO) was achieved from the copper nano‐structure Schiff base complex as the raw material after calcination for 3 hr at 600 °C. According to results Cu2+ gives a complex with mole ratio 1:2 of metal to ligand (ML2) with Schiff base which a distorted square planer is the most probable geometry for it. The calculations results from XRD patterns propose the nano‐sized complexes. The SEM images show morphology of both the copper complex and the CuO powder were plate‐like. The metal chelates of Cu2+ in two states of bulk and nano have been screened for their in vitro antibacterial activity against four bacteria, gram‐positive (Staphylococcus aureus) and gram‐negative (Escherichia coli) and three strains of fungus (Aspergillus flavus). The nano metal chelates were shown to possess more antibacterial activity than the bulk chelate. Finally, the empirical parameters of Schiff base compounds showed a good agreement with theoretical ones.  相似文献   

9.
Salicylidene Schiff base chelates (R,R)‐(–)‐N,N′‐bis(3,5‐di‐tert‐butylsalicylidene)‐1,2‐cyclohexanediaminomanganese(III) chloride, (R,R)‐(–)‐N,N′‐bis(3,5‐di‐tert‐butylsalicylidene)‐1,2‐cyclohexanediaminocobalt(II), N,N′‐bis(salicylidene)‐ethylenediaminocobalt(II), N,N′‐bis(salicylidene)ethylenediaminonickel(II), and N,N′‐bis(salicylidene)ethylenediaminoaquacobalt(II), as well as (R,R)‐(–)‐N,N′‐bis(3,5‐di‐tert‐butylsalicylidene)1,2‐cyclohexanediamine, were kinetically examined as antioxidants in the scavenging of tert‐butylperoxyl radical (tert‐butylOO?). Absolute rate constants and corresponding Arrhenius parameters were determined for reactions of tert‐butylOO? with these chelates in the temperature range ?52.5 to ?11°C. High reactivity of tert‐butylOO? with Mn(III) and Co(II) salicylidene Schiff base chelates was established using a kinetic electron paramagnetic resonance method. These salicylidene Schiff base chelates react in a 1:1 stoichiometric fashion with tert‐butylOO? without free radical formation. Ultraviolet–visible spectrophotometry and differential pulse voltammetry established that the rapid removal rate of tert‐butylOO? by these chelates is the result of Mn(III) oxidation to Mn(IV) and Co(II) oxidation to Co(III) by tert‐butylOO?. It is concluded that removal of alkylperoxyl radical by Mn(III) and Co(II) salicylidene Schiff base chelates may partially account for their biological activities. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 431–439, 2007  相似文献   

10.
《中国化学会会志》2017,64(12):1524-1531
New complexes of nickel(II) and palladium(II) were synthesized using the ferrocenyl imine ligand, which was formed by the condensation of 2‐aminothiophenol and acetylferrocene. This bidentate Schiff base ligand was coordinated to the metal ions through the NS donor atoms. Monomeric complexes of nickel(II) and palladium(II) were synthesized by the reactions of the Schiff base ligand with nickel(II) and palladium(II) chloride in a 2:1 M ratio. In these complexes, the thiol group was deprotonated and coordinated to the metals. The molar conductivity values of the complexes in DMSO showed the presence of non‐electrolyte species. The fluorescence characteristics of the Schiff base ligand and its complexes were studied in DMSO. The synthesized complexes were characterized by FT‐IR, 1H NMR, UV–vis spectroscopy, elemental analysis, and conductometry. Furthermore, the binding interactions of the complexes with DNA were investigated by electronic absorption spectroscopy, and the intrinsic binding constant (K b) was calculated. Moreover, viscosity and melting temperature (T m) were investigated in order to further explore the nature of interactions between the complexes and DNA.  相似文献   

11.
A novel Schiff base, namely Z ‐3‐((2‐((E )‐(2‐hydroxynaphthyl)methylene)amino)‐5‐nitrophenylimino)‐1,3‐dihydroindin‐2‐one, was synthesized from the condensation of 2‐hydroxy‐1‐naphthaldehyde and isatin with 4‐nitro‐o ‐phenylenediamine. It was structurally characterized on the basis of 1H NMR, 13C NMR and infrared spectra and elemental analyses. In addition, Ni(II) and Cu(II) complexes of the Schiff base ligand were prepared. The nature of bonding and the stereochemistry of the investigated complexes were elucidated using several techniques, including elemental analysis (C, H, N), Fourier transform infrared and electronic spectroscopies and molar conductivity. The thermal behaviours of the complexes were studied and kinetic–thermodynamic parameters were determined using the Coats–Redfern method. Density functional theory calculations at the B3LYP/6‐311G++ (d, p) level of theory were carried out to explain the equilibrium geometry of the ligand. The optimized geometry parameters of the complexes were evaluated using LANL2DZ basis set. The total energy of highest occupied and lowest unoccupied molecular orbitals, Mullikan atomic charges, dipole moment and orientation are discussed. Moreover, the interaction of the metal complexes with calf thymus DNA (CT‐DNA) was explored using electronic spectra, viscosity measurements and gel electrophoresis. The experimental evidence indicated that the two complexes could strongly bind to CT‐DNA via an intercalation mechanism. The intrinsic binding constants of the investigated Ni(II) and Cu(II) complexes with CT‐DNA were 1.02 × 106 and 2.15 × 106 M−1, respectively, which are higher than that of the standard ethidium bromide. Furthermore, the bio‐efficacy of the ligand and its complexes was examined in vitro against the growth of bacteria and fungi to evaluate the antimicrobial potential. Based on the obtained results, the prepared complexes have promise for use as drugs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Transition metal complexes of type M(L)2(H2O)x were synthesized, where L is deprotonated Schiff base 2,4‐dihalo‐6‐(substituted thiazol‐2‐ylimino)methylphenol derived from the condensation of aminothiazole or its derivatives with 2‐hydroxy‐3‐halobenzaldehyde and M = Co2+, Ni2+, Cu2+ and Zn2+ (x = 0 for Cu2+ and Zn2+; x = 2 for Co2+ and Ni2+). The synthesized Schiff bases and their metal complexes were thoroughly characterized using infrared, 1H NMR, electronic and electron paramagnetic resonance spectroscopies, elemental analysis, molar conductance and magnetic susceptibility measurements, thermogravimetric analysis and scanning electron microscopy. The results reveal that the bidentate ligands form complexes having octahedral geometry around Co2+ and Ni2+ metal ions while the geometry around Cu2+ and Zn2+ metal ions is four‐coordinated. The geometries of newly synthesized Schiff bases and their metal complexes were fully optimized in Gaussian 09 using 6–31 + g(d,p) basis set. Fluorescence quenching data reveal that Zn(II) and Cu(II) complexes bind more strongly to bovine serum albumin in comparison to Co(II) and Ni(II) complexes. The ligands and their complexes were evaluated for in vitro antibacterial activity against Escherichia coli ATCC 25922 (Gram negative) and Staphylococcus aureus ATCC 29213 (Gram positive) and cytotoxicity against lever hepatocellular cell line HepG2.  相似文献   

13.
A theoretical investigation on the luminescence efficiency of a series of d8 transition‐metal Schiff base complexes was undertaken. The aim was to understand the different photophysics of [M‐salen]n complexes (salen=N,N′‐bis(salicylidene)ethylenediamine; M=Pt, Pd (n=0); Au (n=+1)) in acetonitrile solutions at room temperature: [Pt‐salen] is phosphorescent and [Au‐salen]+ is fluorescent, but [Pd‐salen] is nonemissive. Based on the calculation results, it was proposed that incorporation of electron‐withdrawing groups at the 4‐position of the Schiff base ligand should widen the 3MLCT–3MC gap (MLCT=metal‐to‐ligand charge transfer and MC=metal centered, that is, the dd excited state); thus permitting phosphorescence of the corresponding PdII Schiff base complex. Although it is experimentally proven that [Pd‐salph‐4E] (salph=N,N′‐bis(salicylidene)‐1,2‐phenylenediamine; 4E means an electron‐withdrawing substituent at the 4‐position of the salicylidene) displays triplet emission, its quantum yield is low at room temperature. The corresponding PtII Schiff base complex, [Pt‐salph‐4E], is also much less emissive than the unsubstituted analogue, [Pt‐salph]. Thus, a detailed theoretical analysis of how the substituent and central metal affected the photophysics of [M‐salph‐X] (X is a substituent on the salph ligand, M=Pt or Pd) was performed. Temperature effects were also investigated. The simple energy gap law underestimated the nonradiative decay rates and was insufficient to account for the temperature dependence of the nonradiative decay rates of the complexes studied herein. On the other hand, the present analysis demonstrates that inclusions of low‐frequency modes and the associated frequency shifts are decisive in providing better quantitative estimates of the nonradiative decay rates and the experimentally observed temperature effects. Moreover, spin–orbit coupling, which is often considered only in the context of radiative decay rate, has a significant role in determining the nonradiative rate as well.  相似文献   

14.
The interaction of Schiff base ligand A and its three metal complexes [A‐Fe(II), A‐Cu(II), and A‐Zn(II)] with bovine serum albumin (BSA) was investigated using a tryptophan fluorescence quenching method. The Schiff base ligand A and its three metal complexes all showed quenching of BSA fluorescence in a Tris‐HCl buffer. Quenching constants were determined for quenching BSA by the Schiff base ligand A and its metal complexes in a Tris‐HCl buffer (pH=7.4) at different temperatures. The experimental results show that the dynamic quenching constant (KSV) was increased with increasing temperature, whereas the association constant (K) was decreased with the increase of temperature. The thermodynamic parameters ΔH, ΔG and ΔS at different temperatures were calculated. The ionic strength of the Tris‐HCl buffer had a great influence on the wavelength of maximum emission of BSA. Under low ionic strength, the emission spectra of BSA influenced by A‐Zn(II) had a small blue shift. Compared to A‐Zn(II), the emission spectra of BSA in the presence of the Schiff base ligand A and A‐Cu(II) had no significant λem shift. At high ionic strength, the emission spectra of BSA upon addition of the Schiff base A, A‐Fe(II), and A‐Zn(II) all had a red shift, but the emission spectra of BSA had λem shift neither at low ionic strength, nor at high ionic strength in the presence of A‐Cu(II). Furthermore, the temperature did not affect the λem shift of BSA emission spectra.  相似文献   

15.
Macrocyclic Schiff‐base ligand, bisacetylaceton‐ethylenediimine (BAE) and its transition metal complexes M(BAE) (M = Cu2+, Ni2+) were synthesized. The complexes having characteristics of aromatic systems and well‐defined one‐dimensional structures, reacted with p‐phthaloyl chloride, to obtain polymer complexes. The complexes were characterized by elemental analysis, inductively coupled plasma (ICP), FT‐IR, and thermal analysis and show good thermal stability. ESR spectra analysis discovered that there are free radicals in the chain of polymers, indicating that a weak magnetic spin‐exchange interaction operates between the metal ions and free radicals. It is found that, as the bridging p‐phthaloyl group is able to propagate the magnetic exchange interaction, the polymer complexes show paramagnetic properties by measurement of temperature dependence of the magnetic property, and obey Curie–Weiss law. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
The syntheses, crystal structures, and detailed investigations of the photophysical properties of phosphorescent platinum(II) Schiff base complexes are presented. All of these complexes exhibit intense absorption bands with λmax in the range 417–546 nm, which are assigned to states of metal‐to‐ligand charge‐transfer (1MLCT) 1[Pt(5d)→π*(Schiff base)] character mixed with 1[lone pair(phenoxide)→π*(imine)] charge‐transfer character. The platinum(II) Schiff base complexes are thermally stable, with decomposition temperatures up to 495 °C, and show emission λmax at 541–649 nm in acetonitrile, with emission quantum yields up to 0.27. Measurements of the emission decay times in the temperature range from 130 to 1.5 K give total zero‐field splitting parameters of the emitting triplet state of 14–28 cm?1. High‐performance yellow to red organic light‐emitting devices (OLEDs) using these platinum(II) Schiff base complexes have been fabricated with the best efficiency up to 31 cd A?1 and a device lifetime up to 77 000 h at 500 cd m?2.  相似文献   

17.
A novel Schiff base ligand (L) was prepared through condensation of 2,6‐diaminopyridine and dibenzoyl methane in a 1:1 ratio. This Schiff base ligand was used for complex formation reaction with Fe(III) chloride. The structures of the ligand and its complex were deduced from elemental analyses, mass spectroscopy, 1H NMR, IR, UV‐Vis, electronic spectra, magnetic moment, molar conductivity measurements, thermogravimetric analyses and X‐ray diffraction. The molecular and electronic structures of both ligand and complex were optimized theoretically using density function theory (DFT) method. Moreover, the antimicrobial activities of the prepared compounds were studied and proven against some pathogenic bacteria. The Fe(III) complex had higher biological activity than that of the free ligand. Proceeding from the collected information, the properties of the complex were further investigated. The particle size was determined by dynamic light scattering technique to be 92.59 nm. Textural properties of the nano complex were studied by N2 adsorption to estimate the specific surface area, pore volume and pore size distribution. The pores in the complex were found in the micropore–mesopore range. Differential scanning calorimetric measurements reveal the existence of four endothermic peaks at 243.8, 308, 339.8 and 380.5 K. Dielectric properties and conductivity were scanned at different frequencies and temperatures. The dielectric constant reaches a peak value of 600 at ~390 K, 30 Hz. A cross‐over from the universal dielectric response to the super linear power law of conductivity was reported for this complex at T ≤ 345 K. Finally, the AC‐magnetic susceptibility measurements were carried out in the low‐temperature region. The complex showed paramagnetic behavior with a slight change in the magnitude of its magnetic moment at T = 244 K.  相似文献   

18.
New fluorescent heterocyclic ligands were synthesized by the reaction of 8‐(4‐chlorophenyl)‐3‐alkyl‐3H‐imidazo[4',5':3,4]benzo [1,2‐c]isoxazol‐5‐amine with p‐hydroxybenzaldehyde and p‐chlorobenzaldehyde in good yields. The coordination ability of the ligands with Fe3+ ion was examined in an aqueous metanolic solution. Schiff base ligands and their metal complexes were characterized by elemental analyses, IR, UV–vis, mass, and NMR spectra. The optical properties of the compounds were investigated and the results showed that the fluorescence of all compounds is intense and their obtained emission quantum yields are around 0.15 – 0.53. Optimized geometries and assignment of the IR bands and NMR chemical shifts of the new complexes were also computed by using density functional theory (DFT) methods. The DFT‐calculated vibrational wavenumbers and NMR chemical shifts are in good agreement with the experimental values, confirming suitability of the optimized geometries for Fe(III) complexes. Also, the 3D‐distribution map for HOMO and LUMO of the compounds were obtained. The new compounds showed potent antibacterial activity and their antibacterial activity (MIC) against Gram‐positive and Gram‐negative bacterial species were also determined. Results of antibacterial test revealed that coordination of ligands to Fe(III) leads to improvement in the antibacterial activity.  相似文献   

19.
Two heterobimetallic Zn‐Nd phenylene‐bridged Schiff‐base ligands complexes [ZnNd L1 (Py)(NO3)3] ( 1 ) and [Zn L2 Nd(Py)(NO3)3]·MeCN ( 2 ) (Py = pyridine, H2L1 = N,N′‐bis‐ (3‐methoxy‐salicylidene)phenylene‐1,2‐diamine, H2L2 = N,N′‐bis‐5‐bromo‐3‐methoxy‐salicylidene)phenylene‐1,2‐diamine) were obtained. Both 1 and 2 were structurally characterized by X‐ray crystallography, and their near‐infrared (NIR) luminescent properties were determined. For the two complexes, the occupation of pyridine at the axial position of 3d Zn2+ ions could effectively prevent luminescent quenching arising from OH‐, NH‐ or CH oscillators of the solvates around the 4f Nd3+ ions, and the heavy‐atom (Br) effect of the Schiff‐base ligands on their NIR luminescent properties is also discussed.  相似文献   

20.
We first time prepared main‐chain type cage octasilsesquioxane (T8) containing coordination polymers based on transition metal complexes with a bis‐Schiff base T8 ligand ( bis‐SA‐T 8 ), which was prepared from para‐bis(3‐aminopropyl)hexaisobutyl‐substituted T8 cage ( bis‐T 8 ) with salicylaldehyde. A mono‐Schiff base T8 ligand ( SA‐T 8 ) was prepared from 3‐aminopropylheptaisobutyl‐substituted T8 cage ( mono‐T 8 ) with salicylaldehyde. Coordination of bis‐SA‐T 8 with Cu2+ and Zn2+ in a solution as well as the film state was confirmed by the dd transition appearing as broad shoulder on the longer wavelength at around 600 nm and the fluorescence at around 440–470 nm, respectively. The resulting metallosupramolecular polymers gave optically transparent films in the visible region by a casting method. However, opaque green and whitish films were obtained in the case of the Cu2+ and Zn2+ complexes with SA‐T 8 , respectively. The thermal stabilities of the metallosupramolecular polymers were higher than those of the corresponding metal complexes of SA‐T 8 . © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2260–2266  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号