首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PME, the International Group for the Psychology of Mathematics Education, was founded in 1976, at the Third International Congress on Mathematical Education in Karlsruhe, organised by the International Commission on Mathematics Instruction (ICMI). While PME is thus beyond coming of age and is reflecting its further orientation – due to the present “social turn” – the origins of investigating psychological aspects of mathematics learning have not yet been systematically studied. I am undertaking here a first such approach, concentrating on Germany, where the first pertinent monographs were published in 1913 and 1916. Different endeavours, focussing in particular on the notion of error, merged into the characteristic approach of ‘experimental pedagogy’. Given the key function of ICMI for founding PME, an additional aspect is whether the forerunner of ICMI: the Internationale Mathematische Unterrichtskommission (IMUK), founded in 1908, had an impact upon promoting research into the psychology of mathematics education. The pertinent research was effected by psychology; doing research themselves was still outside the horizon of mathematics educators. Perspectives of future research, in particular comparative ones, are outlined.  相似文献   

2.
David John Clarke 《ZDM》2013,45(1):21-33
Classroom discourse and professional discourse about classrooms constitute forms of social performance undertaken within affordances and constraints that can be both cultural and linguistic. The nature of those discourses performed in mathematics classrooms provides a key indicator of pedagogical principles underlying classroom practice and the theories of learning on which these principles are implicitly founded. The discourses about mathematics classrooms give expression to these pedagogical principles sometimes explicitly and sometimes through embedding privileged forms of practice in the naming conventions by which the mathematics classroom is described. The research reported in this paper suggests that each of these discourses is culturally and linguistically specific. As a consequence, conceptions of accomplished practice are contingent on the history of custom and insight embedded in the conventions of practice and the language with which that practice is described.  相似文献   

3.
Merrilyn Goos  Vince Geiger 《ZDM》2012,44(6):705-715
This article explores theoretical issues underpinning the design and use of online learning environments in mathematics teacher education. It considers the contribution of social theories of learning to conceptualising technology-mediated interaction, focusing specifically on community of practice models and the notion of digital mathematics performance. The article begins by introducing social perspectives on collaboration. Because of the diversity of theories within this broad research paradigm, the next section outlines networking strategies that have been proposed for connecting theoretical approaches. There follows a discussion of studies that illustrate the community of practice and performance-based approaches to research into online mathematics teacher education. The main purpose of the article is to show how these approaches could be connected by examining the same teaching and learning scenarios through different theoretical lenses. The final section identifies implications of this exploration for the design of online learning environments in mathematics teacher education to capitalise on the affordances of Web-based technologies.  相似文献   

4.
Fulvia Furinghetti 《ZDM》2008,40(4):529-543
In this article, I consider the history of the International Commission on Mathematical Instruction (ICMI) from its inception until the International Congress on Mathematical Education (ICME) held in 1969. In this period, mathematics education developed as a scientific discipline. My aim is to study the presence and the contribution of women (if any) in this development. ICMI was founded in 1908, but my history starts before then, at the end of the nineteenth century, when the process of internationalization of mathematics began, thanks to the first International Congress of Mathematicians. Already in those years, the need for internationalizing the debate on mathematics teaching was spreading throughout the mathematical community. I use as my main sources of information the didactics sections in the proceedings of the International Congresses of Mathematicians and the proceedings of the first ICME. The data collected are complemented with information from the editorial board of two journals that for different reasons are linked to ICMI: L’Enseignement Mathématique and Educational Studies in Mathematics. In particular, as a result of my analyses, I have identified four women who may be considered as pioneer women in mathematics education. Some biographical notes on their professional life are included in the paper.  相似文献   

5.
Policy decisions and their implementation impact on the teaching and learning of mathematics in many ways. Sometimes this is overt and takes account of local factors and professional opinion. However global economic policies, often dominated by the actions of huge multinational corporations, can have considerable influence on all aspects of education including mathematics education. These policies appear to be creating greater inequity between and within nations. Quality mathematics education for all, a recurring theme at International Congress on Mathematical Education meetings, is becoming less of a reality. At the same time, mathematics education at every level is increasingly influenced by powerful bureaucrats rather than by the profession. It is suggested that mathematical scientists need to try to understand the political forces affecting mathematics education for the ICMI study on teaching and learning mathematics at the tertiary level to have maximum impact.  相似文献   

6.
7.
Stephen Lerman 《ZDM》2013,45(4):623-631
Whilst research on the teaching of mathematics and the preparation of teachers of mathematics has been of major concern in our field for some decades, one can see a proliferation of such studies and of theories in relation to that work in recent years. This article is a reaction to the other papers in this special issue but I attempt, at the same time, to offer a different perspective. I examine first the theories of learning that are either explicitly or implicitly presented, noting the need for such theories in relation to teacher learning, separating them into: socio-cultural theories; Piagetian theory; and learning from practice. I go on to discuss the role of social and individual perspectives in authors’ approach. In the final section I consider the nature of the knowledge labelled as mathematical knowledge for teaching (MKT). I suggest that there is an implied telos about ‘good teaching’ in much of our research and that perhaps the challenge is to study what happens in practice and offer multiple stories of that practice in the spirit of “wild profusion” (Lather in Getting lost: Feminist efforts towards a double(d) science. SUNY Press, New York, 2007).  相似文献   

8.
The research team of The Linear Algebra Project developed and implemented a curriculum and a pedagogy for parallel courses in (a) linear algebra and (b) learning theory as applied to the study of mathematics with an emphasis on linear algebra. The purpose of the ongoing research, partially funded by the National Science Foundation, is to investigate how the parallel study of learning theories and advanced mathematics influences the development of thinking of individuals in both domains. The researchers found that the particular synergy afforded by the parallel study of math and learning theory promoted, in some students, a rich understanding of both domains and that had a mutually reinforcing effect. Furthermore, there is evidence that the deeper insights will contribute to more effective instruction by those who become high school math teachers and, consequently, better learning by their students. The courses developed were appropriate for mathematics majors, pre-service secondary mathematics teachers, and practicing mathematics teachers. The learning seminar focused most heavily on constructivist theories, although it also examined socio-cultural and historical perspectives. A particular theory, Action-Process-Object-Schema (APOS) [10], was emphasized and examined through the lens of studying linear algebra. APOS has been used in a variety of studies focusing on student understanding of undergraduate mathematics. The linear algebra courses include the standard set of undergraduate topics. This paper reports the results of the learning theory seminar and its effects on students who were simultaneously enrolled in linear algebra and students who had previously completed linear algebra and outlines how prior research has influenced the future direction of the project.  相似文献   

9.
This is a study of mathematics students working in small groups. Our research methodology allows us to examine how individual ideas develop in a social context. The research perspective used in this study is based on a co-constructive view of learning. Groups of three or four undergraduate mathematics majors, with prior experience writing mathematical proofs together, were asked to prove three statements. Computer software, such as Geometers Sketchpad, was available. Group work sessions were videotaped. Later, individuals viewed segments of the group video and were asked to reflect on group activities. Students in some groups did not share a common conception of proof, which seemed to hamper their collaboration. We observed interactions that fit with the co-constructive theory, with bidirectional interactions that shaped both group and individual conceptions of the tasks. These changes in understanding may result from parallel and successive internalization and externalization of ideas by individuals in a social context.  相似文献   

10.
This paper reports the similarities and differences in how “expert mathematics teacher” is conceptualized by mathematics educators in Hong Kong and Chongqing, two cities in China which share similar but different cultural and social backgrounds. Thirty-seven mathematics education researchers, school principals with mathematics education background, and mathematics teachers were interviewed on their perceptions of expert mathematics teacher. It is found that in both cities an expert mathematics teacher should have a profound knowledge base in mathematics, teaching, and students; strong ability in teaching; and a noble personality and a spirit of life-long learning. As for differences, an expert mathematics teacher should have the ability to conduct research, mentor other teachers, and have profound knowledge of examination and educational theories in Chongqing. These attributes were not found in Hong Kong. These similarities and differences are discussed, and relevant social and cultural factors in the two contexts are examined.  相似文献   

11.
Looking back at the place of technology in the past ICMEs during the last decades and on the two ICMI studies devoted to technology, it is obvious that the role and use of technology has given rise to a diversity of points of view and attitudes across the world. The ICMEs and the two studies are places where researchers, teacher educators and practitioners meet. To what extent do they reflect the evolution of the trends of research and/or of integration of technology into real practice? The study will develop a general analysis of the theoretical frameworks, issues and wishes related to the use of technology in mathematics teaching from the proceedings of past ICMEs and of the two ICMI studies. Both a quantitative and a qualitative point of view will be adopted. From the great diversity of questions and approaches, the study attempts to formulate the main trends and their evolution over time within the ICMI community, as well as some pertinent issues for the coming years.  相似文献   

12.
Norma Presmeg 《ZDM》2009,41(1-2):131-141
As a young field in its own right (unlike the ancient discipline of mathematics), mathematics education research has been eclectic in drawing upon the established knowledge bases and methodologies of other fields. Psychology served as an early model for a paradigm that valorized psychometric research, largely based in the theoretical frameworks of cognitive science. More recently, with the recognition of the need for sociocultural theories, because mathematics is generally learned in social groups, sociology and anthropology have contributed to methodologies that gradually moved away from psychometrics towards qualitative methods that sought a deeper understanding of issues involved. The emergent perspective struck a balance between research on individual learning (including learners’ beliefs and affect) and the dynamics of classroom mathematical practices. Now, as the field matures, the value of both quantitative and qualitative methods is acknowledged, and these are frequently combined in research that uses mixed methods, sometimes taking the form of design experiments or multi-tiered teaching experiments. Creativity and rigor are required in all mathematics education research, thus it is argued in this paper, using examples, that characteristics of both the arts and the sciences are implicated in this work.  相似文献   

13.
In a national supplement to TIMSS, lower-secondary school teachers (N=102) and their students (N=975) reported on mathematics instruction by means of a teacher questionnaire (teaching-learning methods, instructional sub-goals, facilitated student activities, achievement assessment, teacher role) and a student questionnaire (teachers' instructional proficiency, classroom climate). A cluster analysis performed on the ratings of teaching-learning methods yielded a solution with three clusters referred to as progressive, classical, and balanced learning environment. Cluster-related differences in facilitated student activities, achievement evaluation and preferred teacher role were found but not in instructional sub-goals. Students from different learning environments equally approved teachers' instructional proficiency and classroom climate and also had similar TIMSS mathematics scores. The results of this study provide empirical evidence that in addition to classical teacher-centered learning environments there seem to exist more diversified and studentcentered learning environments that address the needs for students to direct their own learning, communicate and work with others, and develop ways of dealing with complex problems. In line with the research literature it was also found that high mathematics achievement is not restricted to a certain type of learning environment.  相似文献   

14.
A prized property of theories of all kinds is that of generality, of applicability or least relevance to a wide range of circumstances and situations. The purpose of this article is to present a pair of distinctions that suggest that three kinds of generality are to be found in mathematics and logics, not only at some particular period but especially in developments that take place over time: ‘omnipresent’ and ‘multipresent’ theories, and ‘ubiquitous’ notions that form dependent parts, or moments, of theories. The category of ‘facets’ is also introduced, primarily to assess the roles of diagrams and notations in these two disciplines. Various consequences are explored, starting with means of developing applied mathematics, and then reconsidering several established ways of elaborating or appraising theories, such as analogising, revolutions, abstraction, unification, reduction and axiomatisation. The influence of theories already in place upon theory-building is emphasised. The roles in both mathematics and logics of set theory, abstract algebras, metamathematics, and model theory are assessed, along with the different relationships between the two disciplines adopted in algebraic logic and in mathematical logic. Finally, the issue of monism versus pluralism in these two disciplines is rehearsed, and some suggestions are made about the special character of mathematical and logical knowledge, and also the differences between them. Since the article is basically an exercise in historiography, historical examples and case studies are described or noted throughout.  相似文献   

15.
This paper sets the scene for a special issue of ZDMThe International Journal on Mathematics Education—by tracing key elements of the fields of teacher and didactician/teacher-educator learning related to the development of opportunities for learners of mathematics in classrooms. It starts from the perspective that joint activity of these two groups (teachers and didacticians), in creation of classroom mathematics, leads to learning for both. We trace development through key areas of research, looking at forms of knowledge of teachers and didacticians in mathematics; ways in which teachers or didacticians in mathematics develop their professional knowledge and skill; and the use of theoretical perspectives relating to studying these areas of development. Reflective practice emerges as a principal goal for effective development and is linked to teachers’ and didacticians’ engagement with inquiry and research. While neither reflection nor inquiry are developmental panaceas, we see collaborative critical inquiry between teachers and didacticians emerging as a significant force for teaching development. We include a summary of the papers of the special issue which offer a state of the art perspective on developmental practice.  相似文献   

16.
We briefly comment on different perspectives on (1) the role of mathematics education theories, (2) the issue of plurality and healthy heterogeneity versus consolidation; (3) underlying inquiry systems or the implicit role of philosophy in theories of mathematics education. This paper also outlines developments within the European research scene on theory usage in mathematics education research, which complement the discussion at the 29th PME research forum in Melbourne.  相似文献   

17.
Dongwon Kim  Mi-Kyung Ju 《ZDM》2012,44(2):149-160
The purpose of this study is to explore how students changes through learning to construct mathematical proofs in an inquiry-based middle school geometry class in Korea. Although proof has long been considered as one of the most important aspects of mathematics education, it is well-known that it is one of the most difficult areas of school mathematics for students. The geometry inquiry classroom (GIC) is an experimental class designed to teach geometry, especially focusing on teaching proof, based on students’ own inquiry. Based on a 2-year participant observation in the GIC, this study was conducted to address the following research question: how has students’ practice of mathematical proof been changed through their participation in the GIC? The in-depth analysis of the classroom discourse identified three stages through which the students’ practice of mathematical proof was transformed in the GIC: ‘emergent understanding of proof’, ‘proof learning as a goal-oriented activity’, ‘experiencing proof as the practice of mathematics’. The study found that as learning evolved through these stages, so the mathematics teacher’s role shifted from being an instructor to a mediator of communication. Most importantly, this research showed that the GIC has created a learning environment where students develop their competence in constructing meaningful mathematical proof and grow to be ‘a human who proves’, ultimately ‘a person who playfully engages with mathematics’.  相似文献   

18.
The transfer of learning has been the subject of much scientific inquiry in the social sciences. However, mathematics education research has given little attention to a subclass called backward transfer, which is when learning about new concepts influences learners’ ways of reasoning about previously encountered concepts. This study examined when and in what ways a quadratic functions instructional unit productively influenced middle school students’ ways of reasoning about linear functions. Results showed that students’ ways of reasoning about essential properties of linear functions were productively influenced. Furthermore, conceptual connections were identified linking changes in students’ ways of reasoning about linear functions to what they learned during the quadratics unit. These findings suggest that it is possible to productively influence learners’ ways of reasoning about previously learned-about concepts in significant respects while teaching them new material and that backward transfer offers promise as a new focus for mathematics education research.  相似文献   

19.
Over the past 20 years learning trajectories and learning progressions have gained prominence in mathematics and science education research. However, use of these representations ranges widely in breadth and depth, often depending on from what discipline they emerge and the type of learning they intend to characterize. Learning trajectories research has spanned from studies of individual student learning of a single concept to trajectories covering a full set of content standards across grade bands. In this article, we discuss important theoretical assumptions that implicitly guide the development and use of learning trajectories and progressions in mathematics education. We argue that diverse theoretical conceptualizations of what it means for a student to “learn” mathematics necessarily both constrains and amplifies what a particular learning trajectory can capture about the development of students’ knowledge.  相似文献   

20.
In this commentary paper to the special issue on “Cognitive Neuroscience and Mathematics Education”, we reflect on the connection between cognitive neuroscience and mathematics education from an educational research point of view. The current issue highlights that cognitive neuroscience offers a series of tools, methodologies and theories to investigate cognitive processes that take place during mathematical thinking and learning. This might complement and extend our knowledge that has been obtained on the basis of behavioral data only, the common approach in educational research. At the same time, we note that the existing neuroscientific studies have investigated mathematical performance in relative isolation from the educational context. The characteristics of this context have, however, a large influence on mathematical performance and its correlated brain activity, an issue that should be addressed in future research. We contend that traveling back and forth from cognitive neuroscience to mathematics education might yield a better understanding of how mathematical learning takes place and how it can be influenced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号