首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crack tip fields are investigated for a cracked functionally graded material (FGM) plate by Reissner’s linear plate theory with the consideration of the transverse shear deformation generated by bending. The elastic modulus and Poisson’s ratio of the functionally graded plates are assumed to vary continuously through the coordinate y, according to a linear law and a constant, respectively. The governing equations, i.e., the 6th-order partial differential equations with variable coefficients, are derived in the polar coordinate system based on Reissner’s plate theory. Furthermore, the generalized displacements are treated in a separation-of-variable form, and the higher-order crack tip fields of the cracked FGM plate are obtained by the eigen-expansion method. It is found that the analytic solutions degenerate to the corresponding fields of the isotropic homogeneous plate with Reissner’s effect when the in-homogeneity parameter approaches zero.  相似文献   

2.
A multilayer plate with isotropic (or transversally isotropic) layers strongly differing in rigidity is considered. This plate is reduced to an equivalent homogeneous transversally isotropic Timoshenko–Reissner plate whose deflections and free transverse vibration frequencies are close to those of the multilayer plate. By comparison with the exact solution of test three-dimensional problems of elasticity, the error of the proposed method is estimated both for the static problem and for free vibrations. This comparison can readily be carried out for the hinged edges of the plate, and explicit approximate formulas are obtained for the vibration frequencies. The scope of the proposed model turned out to be rather wide (the Young moduli of soft and rigid layers can differ by a factor of 1000). In the case of boundary conditions other than hinged support, a closed-form solution cannot be constructed in general. For rigidly fixed edges, the asymptotic method proposed by V. V. Bolotin is generalized to the case of a Timoshenko–Reissner plate.  相似文献   

3.
Symplectic solution system for reissner plate bending   总被引:3,自引:0,他引:3  
Based on the Hellinger-Reissner variatonal principle for Reissner plate bendingand introducing dual variables, Hamiltonian dual equations for Reissner plate bending werepresented. Therefore Hamiltonian solution system can also be applied to Reissner platebending problem, and the transformation from Euclidian space to symplectic space and fromLagrangian system to Hamiltonian system was realized. So in the symplectic space whichconsists of the original variables and their dual variables, the problem can be solved viaeffective mathematical physics methods such as the method of separation of variables andeigenfunction-vector expansion. All the eigensolutions and Jordan canonical formeigensolutions for zero eigenvalue of the Hamiltonian operator matrix are solved in detail, and their physical meanings are showed clearly. The adjoint symplectic orthonormal relation of the eigenfunction vectors for zero eigenvalue are formed. It is showed that the alleigensolutions for zero eigenvalue are basic solutions of the Saint-Venant problem and theyform a perfect symplectic subspace for zero eigenvalue. And the eigensolutions for nonzeroeigenvalue are covered by the Saint-Venant theorem. The symplectic solution method is notthe same as the classical semi-inverse method and breaks through the limit of the traditional semi-inverse solution. The symplectic solution method will have vast application.  相似文献   

4.
The stress distribution near a rectilinear boundary and a boundary with a notch of different depths in an anisotropic plate is analyzed. The plate boundary is under the action of a surface or embedded impulsive source. The results presented have been obtained using the dynamic photoelastic method for optically sensitive orthotropic plates. The results for orthotropic and isotropic plates with different ratios of notch depth to wavelength are analyzed  相似文献   

5.
四边简支矩形中厚板的弯曲   总被引:1,自引:0,他引:1  
本文采用Reissner中厚板理论求解了四边简支矩形中厚板的弯曲问题。文中首先对Reissner中厚板理论的控制方程进行了适当的变更,使之成为非耦联的二阶偏微分方程组,然后利用有限积分变换法求解所得新的控制方程,得到了四边简支矩形中厚板受均布载荷作用下的解析解。文中所述方法可用以求解具有其它边界条件和载荷的矩形中厚板的弯曲问题,同时还可移植应用于其它中厚板理论。  相似文献   

6.
The purpose of this paper is to propose a method for the evaluation of plate elements in the finite element engineering software comparatively to the Kirchhoff and Reissner plate theories. The method is based on the study of transverse deflection near a crack tip. A numerical work has been conducted for the shell elements in Abaqus software with different crack lengths and various thicknesses. The deflection can be written as a function of the exponent of the distance between the crack tip and one point along the crack. This exponent is accepted to describe the behaviour of finite elements.  相似文献   

7.
This paper deals with the rectangular tensile sheet with a center notch crack. Such a crack problem is called a center notch crack problem for short. By using a hybrid displacement discontinuity method (a boundary element method) proposed recently by Yan, two center notch models are analyzed in detail. By changing the geometrical forms and parameters of the center notch, and by comparing the SIFs of the center notch crack problem with those of the center cracked plate tension specimen (CCT), which is a model frequently used in fracture mechanics, the effect of the geometrical forms and parameters of the center notch on the stress intensity factors (SIFs) of the center cracked plate tension specimen, is revealed. Some geometric characterestic parameters are introduced here, which are used to formulate the notch length and the branch crack length, which are to be determined in mechanical machining of the center cracked plate tension specimen. So we can say that the geometric characterestic parameters and the formulae used to determine the notch length and the branch crack length presented in this paper perhaps have some guidance role for mechanical machining of the center cracked plate tension specimen. In addition, the numerical investigation proves that the conventional angular notched specimen is much less sensitive to the size of notch than is the circular notched specimen.  相似文献   

8.
基于Reissner-Mindlin一阶剪切变形板理论,采用摄动-Galerkin混合法,给出双参数弹性地基上四边自由矩形中厚板在对称分布局部荷载作用下的大挠度弯曲渐近解,满足全部自由边界条件和控制方程,同时讨论弹性地基刚度系数对自由矩形厚板大挠度弯曲的影响。  相似文献   

9.
基于平面偶应力-Reissner/Mindlin板比拟的偶应力有限元   总被引:1,自引:1,他引:1  
偶应力理论的有限元列式面临本质性的C1连续性困难. 平面偶应力理论和Reissner/Mindlin板弯曲理论之间的比拟关系表明这两个理论系统的有 限元的同一性,而R/M板有限元并不存在C1连续性困难. 因此,研究将R/M板单元转化为具有一般位移自由度的平面偶应力单元的一般方法. 根据这一方法,将典型的8节点Serendipity型R/M板单元Q8S转化为一个4节点12 自由度的四边形平面偶应力单元,数值结果表明该单元具有良好的精度和收敛性  相似文献   

10.
本文借助简化的Reissner理论,利用边界元法对具有域内支承的中厚板进行了分析。建立了相应的边界积分方程,导出了各基本解,讨论了域内支承柱对板的支承情况,编制了计算程序并给出部分算例。  相似文献   

11.
郭强  沈惠申 《力学季刊》2004,25(3):355-361
基于Reissner-Mindlin一阶剪切变形板理论,讨论在预加面内机械荷载或温度场作用下,点支撑中厚矩形板的弯曲问题。温度场假定沿板表面为均布,沿板厚方向为线性分布的。利用考虑剪切变形影响的Timoshenko梁函数,采用Rayleigh-Ritz法给出不同边界条件下点支撑中厚板在横向荷载作用下的挠度和弯矩分布。结果表明,均匀温度场与预加面内压力将使板的挠度和弯矩增加。支撑点位置的变化、边界约束条件和横向剪切变形效应都对板的内力大小和分布有显著影响。  相似文献   

12.
把Rekner型平板裂纹尖端位移场展开式推广到任意切口、任意边界的多材料问题.证明了Reissner型平板断裂问题的特征根等价于相类似的反平面切口问题和平面切口问题两部分的特征根迭加.  相似文献   

13.
IntroductionThe moderate thickness plates on elastic foundation are a kind of important structure instructural engineering. The mechanic characters of the plates on elastic foundation withdifferent boundary conditions have been received considerable atten…  相似文献   

14.
The elastic stress and strain fields of finite thickness large plate containing a hole are systematically investigated using 3D finite element method. It is found that the stress and strain concentration factors of the finite thickness plate are different even if the plate is in elasticity state except at notch root of plate surface. The maximum stress and strain do not always occur on the mid plane of plate. They occur on the mid plane only in thin plate. The maximum stress and strain concentration factors are not on mid plane and the locations of maximum stress and strain concentration factors are different in thick plate. The maximum stress and strain concentration factors of notch root increase from their plane stress value to their peak values, then decrease gradually with increasing thickness and tend to each constant related to Poisson’s ratio of plate, respectively. The stress and strain concentration factors at notch root of plate surface are the same and are the monotonic descent functions of thickness. Their values decrease rapidly and tend to each constant related to Poisson’s ratio with plate thickness increasing. The difference between maximum and surface value of stress concentration factor is a monotonic ascent function of thickness. The thicker the plate is or the larger the Poisson’s ratio is, the larger the difference is. The corresponding difference of strain concentration factor is similar to the one of stress concentration factor. But the difference magnitude of stress concentration factor is larger than that of strain concentration factor in same plate.  相似文献   

15.
In this paper, a new numerical technique, the differential quadrature element method (DQEM) , has been developed for static analysis of the two-dimensional polar Reissner–Mindlin plate in the polar coordinate system by integrating the domain decomposition method (DDM) with the differential quadrature method (DQM) . The detailed formulations for the sectorial DQEM plate bending element and the compatibility conditions between each element are presented. The convergence properties and the accuracy of the DQEM for bending of thick polar plates are investigated through a number of numerical computations. Consequently, the DQEM has been successfully applied to analyze several annular sector plates with discontinuous loading and boundary conditions and cutouts to illustrate the simplicity and flexibility of this method for solving Reissner–Mindlin plates in polar coordinate system which are not solvable directly using the differential quadrature method. The numerical results are verified by the existing exact solutions or the FEM solutions obtained using the software package ANSYS (Version 5.3) .  相似文献   

16.
Batista  Milan 《Meccanica》2012,47(1):257-268
In the article, the exact solution of a sinusoidal loaded simply supported rectangular plate is given for the case of an isotropic plate and for the case of a transversally inextensible plate. Asymptotic and numerical comportment with Reissner, Mindlin and Reddy plate models is present.  相似文献   

17.
针对Reissner-Mindlin夹支板模型,给出了两个关于板厚一致收敛的稳定给有限元逼近格式,其一,局部特征值摄动法,其二,残差bubble-函数法。  相似文献   

18.
IntroductionBruun[1],Huang[2 ]andWang[3]publishedtheirpapersrelatedtolinearlystaticanalysisofcircularsandwichplates .Liuetal.setupnonlinearbendingequationsofacircularsandwichplate[4 ],andsolvedaseriesofnonlinearproblems[5~ 10 ].Sofartheothersneverdiscuss…  相似文献   

19.
The extended finite element method is used to analyze a plate with two parallel edge cracks impacted by a cylindrical projectile. The influence of the impact speed, crack length,plate thickness and notch tip radius on the crack initiation and propagation is studied. Dynamics equations are solved by an implicit time integration scheme which is unconditionally stable. Very good agreement is achieved between numerical predictions and experimental results. The critical velocity of the crack initiation under different conditions is examined. The influence of the crack length is greater than that of the impact speed, plate thickness and notch tip radius.  相似文献   

20.
A mathematical study via variational convergence of a periodic distribution of classical linearly elastic thin plates softly abutted together shows that it is not necessary to use a different continuum model nor to make constitutive symmetry hypothesis as starting points to deduce the Reissner–Mindlin plate model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号