首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural and magnetic changes on invar Fe64Ni36 alloy (TC = 500 K) produced by mechanical milling followed by heating up to 1073 K, were investigated by neutron diffraction, magnetization measurements, X‐ray diffraction under high pressures and X‐ray absorption at both Fe and Ni K‐edges. We argue that the strain induced in the Fe64Ni36 material after this treatment mainly affects the Fe sites due to the magnetovolume coupling, the most notorious feature being the increase of the Curie temperature (ΔTC = 70 K). (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The crystal structure of SmFeAs(O0.93F0.07) has been investigated under high pressure (up to ∼9 GPa) by means of synchrotron powder diffraction analysis followed by Rietveld refinement. The bulk modulus was calculated (K0 = 103 GPa) using a 3rd order Birch–Murnaghan equation of state and resulted in quite good agreement with theoretical calculations reported for LaFeAsO. The linear compressibilities βa and βc are 2.11(4) and 4.56(7) × 10−3 GPa−1, respectively.  相似文献   

3.
The magnetic and structural properties of epitaxial Fe films grown on Si(1 1 1) are investigated by polarized neutron reflectometry (PNR) at room temperature. The influence of different types of interfaces, Fe/Si, Fe/FeSi2 and Au/Fe on the magnetic properties of Fe films deposited by molecular beam epitaxy onto Si(1 1 1) are characterized. We observe a drastic reduction of the magnetic moment in the entire Fe film deposited directly on the silicon substrate essentially due to strong Si interdiffusion throughout the whole Fe layer thickness. The use of a silicide FeSi2 template layer stops the interdiffusion and the value of the magnetic moment of the deposited Fe layer is close to its bulk value. We also evidence the asymmetric nature of the interfaces, Si/Fe and Fe/Si interfaces are magnetically very different. Finally, we show that the use of Au leads to an enhancement of the magnetization at the interface.  相似文献   

4.
AlN films have been grown on atomically flat carbon face 6H‐SiC (000 ) substrates by pulsed laser deposition and their structural properties have been investigated. In‐situ reflection high‐energy electron diffraction observations have revealed that growth of AlN at 710 °C proceeds in a Stranski–Krastanov mode, while typical layer‐by‐layer growth occurs at room temperature (RT) with atomically flat surfaces. It has been revealed that the crystalline quality of the AlN film is dramatically improved by the reduction in growth temperature down to RT and the full width at half maximum values in the X‐ray rocking curves for 0004 and 10 2 diffractions of the RT‐grown AlN film are 0.05° and 0.07°, respectively. X‐ray reciprocal space mapping has revealed that the introduction of misfit dislocations is suppressed in the case of RT growth, which is probably responsible for the improvement in crystalline quality. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Niobium is sputtered onto a single crystalline silicon substrate in N2:Ar=4:1 gas mixture at the total pressure of 2 Pa. The temperature coefficient of resistance of the sample is about 0.5% at 30OK, and up to 7% at 77K, indicating the possibility of using it to make room-temperature bolometers with performances better than those based on Pt, Bi, or Nb. For a 60-nm-thick sample, the rms surface roughness is 0.45nm over an area of 2 μm × 2 μm. Analyses based on x-ray diffraction and x-ray photoelectronic spectroscopy indicate that the samples are Nb5N6 thin films in which there is a combination of Nb^3+ and Nb^5+, or Nb^4+.  相似文献   

6.
A method for accurate determination of the curvature radius of semiconductor thin films is proposed. The curvature-induced broadening of the x-ray rocking curve (XRC) of a heteroepitaxially grown layer can be determined if the dependence of the full width at half maximum (FWHM) of XRC is measured as a function of the width of incident x-ray beam. It is found that the curvature radii of two GaN films grown on a sapphire wafer are different when they are grown under similar MOCVD conditions but have different values of layer thickness. At the same time, the dislocation-induced broadening of XRC and thus the dislocation density of the epitaxial film can be well calculated after the curvature correction.  相似文献   

7.
Polycrystalline thin films of Fe3−xZnxO4 (x = 0.0, 0.01 and 0.02) were prepared by pulsed-laser deposition technique on Si (1 1 1) substrate. X-ray diffraction studies of parent as well as Zn doped magnetite show the spinel cubic structure of film with (1 1 1) orientation. The order–disorder transition temperature for Fe3O4 thin film with thickness of 150 nm are at 123 K (Si). Zn doping leads to enhancement of resistivity by Zn2+ substitution originates from a decrease of the carrier concentration, which do not show the Verwey transition. The Raman spectra for parent Fe3O4 on Si (1 1 1) substrate shows all Raman active modes for thin films at energies of T2g1, T2g3, T2g2, and A1g at 193, 304, 531 and 668 cm−1. It is noticed that the frequency positions of the strongest A1g mode are at 668.3 cm−1, for all parent Fe3O4 thin film shifted at lower wave number as 663.7 for Fe2.98Zn0.02O4 thin film on Si (1 1 1) substrate. The integral intensity at 668 cm−1 increased significantly with decreasing doping concentration and highest for the parent sample, which is due to residual stress stored in the surface.  相似文献   

8.
Centimetre-long ZnO fibres are synthesized by vapour transportation via thermal evaporation of ZnO powders. The growth process is carried out in a graphite crucible, in which ZnO powder is loaded as the source material, and a silicon wafer is positioned on the top of the crucible as the growth substrate. During the growth process, the source temperature is kept at 800℃ and the substrate temperature is kept at 600℃. Typical growth time to obtain centimetre-long ZnO fibres is 5-10 hours. Scanning electron microscopy (SEM), x-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) measurement results show that ZnO fibres are single crystalline with high crystalline quality and very low defects concentration.  相似文献   

9.
Heteroepitaxial growth of non‐polar m ‐plane (10 0) ZnO has been demonstrated on (112) LaAlO3 single crystal substrates using the pulsed laser deposition method. X‐ray diffraction, reflection high energy electron diffraction, and cross‐sectional transmission electron microscopy with selected‐area diffraction, have been used to characterize the structural properties of deposited ZnO films. The epitaxial relationship between ZnO and LAO is shown to be (10 0)ZnO ∥ (112)LAO, (11 0)ZnO ∥ ( 1)LAO and [0001]ZnO ∥ [ 10]LAO. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
A completely different formulation for simulation of the high order Laue zone (HOLZ) diffractions is derived. It refers to the new method, i.e. the Taylor series (TS) method. To check the validity and accuracy of the TS method, we take polyvinglidene fluoride (PVDF) crystal as an example to calculate the exit wavefunction by the conventional multi-slice (CMS) method and the TS method. The calculated results show that the TS method is much more accurate than the CMS method and is independent of the slice thicknesses. Moreover, the pure first order Lane zone wavefunction by the TS method can reflect the major potential distribution of the first reciprocal plane.  相似文献   

11.
The structural and magnetic properties of 3-nm-thick CoPt alloys grown on WSe2(0 0 0 1) at various temperature are investigated. Deposition at room temperature leads to the formation of a chemically disordered fcc CoPt alloy with [1 1 1] orientation. Growth at elevated temperatures induces L10 chemical order starting at 470 K accompanied with an increase in grain size and a change in grain morphology. As a consequence of the [1 1 1] growth direction, the CoPt grains can adopt one of the three possible variants of the L10 phase with tetragonal c-axis tilted from the normal to the film plane direction at 54°. The average long-range order parameter is found to be 0.35(±0.05) and does not change with the increase in the deposition temperature from 570 to 730 K. This behavior might be related to Se segregation towards the growing facets and surface disorder effects promoted by a high surface-to-volume ratio. Magnetic studies reveal a superparamagnetic behavior for the films grown at 570 and 730 K in agreement with the film morphology and degree of chemical order. The measurements at 10 K reveal the orientation of the easy axis of the magnetization lying basically in the film plane.  相似文献   

12.
13.
Magnetic shape memory alloys are promising materials to replace giant magnetostrictive materials and piezoelectrical ceramics in actuating devices due to the large magnetically induced strains. Ni-Mn-Ga is the most intense studied system due to its relatively high operational temperatures and the huge magnetically induced strains reported. Up to now the application of these materials is still limited by the operational temperature range. Additionally twin boundary mobility suffers from structural defects increasing the magnetic fields needed for significant and reproducible strains. The sample quality is affected by crystal inhomogeneity, porosity and impurities. Here new results are reported for the Ni-Mn-Ga class based on a set of single crystals grown by the SLARE method, recently developed by Mecklenburg et al. Single crystalline samples of Ni49.7Mn29.3Ga21 of tetragonal martensitic structure exhibit a magnetic field induced strain of more than 4% below 170 mT and 6.5% at only 340 mT. Furthermore the operational temperature regimen could be expanded up to 65 °C.  相似文献   

14.
Two methods—the solid-phase high-temperature (1300 °C) and the liquid-phase low-temperature (750 °C) routes—were used to synthesize the complex oxide La1.25Sr0.75MnCoO6, which has the structure of rhombohedral perovskite and is characterized by a disordered distribution of Mn and Co in structural sites. It was found by means of X-ray absorption near edge spectroscopy (XANES) at the K-edge that mixed valence states of Co2+/Co3+ and Mn3+/Mn4+, exist in both phases. Measurements of dc magnetization and real (χ′) and imaginary (χ″) parts of the ac susceptibility showed that the magnetic properties of these oxides are determined by a ferromagnetic transition at TC=217 K and a frequency-dependent transition at Tg<100 K. The high frequency dependence of Tg is indicative of the cluster-glass behavior of La1.25Sr0.75MnCoO6 (7 5 0) at T<TC within the ferromagnetic state.  相似文献   

15.
Nd2Hf2O7 (NHO) thin films have been epitaxially grown by pulsed laser deposition (PLD) on Ge(1 1 1) substrates. In situ reflection high-energy electron diffraction (RHEED) evolution of the (1 1 1)-oriented NHO during the deposition has been investigated and shows that the epilayer has a twin-free character with type-B stacking. Interfacial structure of NHO/Ge has been examined by high-resolution transmission electron microscopy (HRTEM). The results indicate a highly crystalline film with a very thin interface, and the orientation relationship between NHO and Ge can be denoted as (1 1 1)NHO//(1 1 1)Ge and . Finally, twin-free epitaxial growth of NHO with type-B orientation displays temperature dependence and the type-B epitaxy is favored at high temperature.  相似文献   

16.
Cu- and Ag-doped ZnO films were deposited by direct current co-reactive magnetron sputtering technique. The microstructure, the chemical states of the oxygen, zinc, copper and silver and the optical properties in doped ZnO films were investigated by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS) and UV-Visible spectroscopy. XRD analysis revealed that both of Cu- and Ag-doped ZnO films consist of single phase ZnO with zincite structure while the doping elements had an evident effect on the (0 0 2) preferential orientation. The XPS spectra showed that the chemical states of oxygen were different in Cu- and Ag-doped ZnO thin films, which may lead to the shift of the band gap as can be observed in the transmittance and absorption spectra. Meanwhile, the widths of band tails of ZnO films became larger after Cu and Ag doping.  相似文献   

17.
TiCN/TiNbCN multilayer coatings with enhanced mechanical properties   总被引:1,自引:0,他引:1  
Enhancement of mechanical properties by using a TiCN/TiNbCN multilayered system with different bilayer periods (Λ) and bilayer numbers (n) via magnetron sputtering technique was studied in this work. The coatings were characterized in terms of structural, chemical, morphological and mechanical properties by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nanoindentation. Results of the X-ray analysis showed reflections associated to FCC (1 1 1) crystal structure for TiCN/TiNbCN films. AFM analysis revealed a reduction of grain size and roughness when the bilayer number is increased and the bilayer period is decreased. Finally, enhancement of mechanical properties was determined via nanoindentation measurements. The best behavior was obtained when the bilayer period (Λ) was 15 nm (n = 200), yielding the highest hardness (42 GPa) and elastic modulus (408 GPa). The values for the hardness and elastic modulus are 1.6 and 1.3 times greater than the coating with n = 1, respectively. The enhancement effects in multilayer coatings could be attributed to different mechanisms for layer formation with nanometric thickness due to the Hall-Petch effect; because this effect, originally used to explain the increase in hardness with decreasing grain size in bulk polycrystalline metals, has also been used to explain hardness enhancements in multilayers taking into account the thickness reduction at individual single layers that make the multilayered system. The Hall-Petch model based on dislocation motion within layers and across layer interfaces, has been successfully applied to multilayers to explain this hardness enhancement.  相似文献   

18.
Polymer electrolyte based on PVA doped with different concentrations of NH4Br has been prepared by solution casting technique. The complexation of the prepared polymer electrolytes has been studied using X-ray diffraction (XRD) and Fourier transform infra red (FTIR) spectroscopy. The maximum ionic conductivity (5.7×10−4 S cm−1) has been obtained for 25 mol% NH4Br-doped PVA polymer electrolyte. The temperature dependence of ionic conductivity of the prepared polymer electrolytes obeys Arrhenius law. The ionic transference number of mobile ions has been estimated by dc polarization method and the results reveal that the conducting species are predominantly ions. The dielectric behavior of the polymer electrolytes has been analyzed using dielectric permittivity and electric modulus spectra.  相似文献   

19.
AlxGa1-xN epilayers with a wide Al composition range (0.2≤x≤ 0.68) were grown on AlN/sapphire templates by low-pressure metalorganic chemical vapour deposition (LP-MOCVD). X-ray diffraction results reveal that both the (0002) and (10-15) full widths at half-maximum (FWHM) of the AlxGa1-xN epilayer decrease with increasing Al composition due to the smaller lattice mismatch to the AlN template. However, the surface morphology becomes rougher with increasing Al composition due to the weak migration ability of Al atoms. Low temperature photoluminescence (PL) spectra show pronounced near band edge (NBE) emission and the NBE FWHM becomes broader with increasing Al composition mainly caused by alloy disorder. Meanwhile, possible causes of the low energy peaks in the PL spectra are discussed.  相似文献   

20.
We report the superior stability of the composite Cs2CO3 :Ag/Ag cathode structure, which can be used in efficient organic light-emitting diodes (OLEDs). Devices with the Cs2CO3:Ag (1:10, 5nm)/Ag (95nm) cathode show a considerably improved lifetime compared with the control device with the Cs2CO3 (0.5 nm)/Ag (100 nm) cathode. The composite Cs2CO3 :Ag/Ag film is proved to be stable in the atmosphere. X-ray diffraction (XRD) is applied to analyze the crystalline structure of the Cs2CO3:Ag film, and it is demonstrated that CsAg alloy is formed, leading to the improved stability of the thin film and the devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号