首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The eddy-current inspection is applied to Vitkovice to non-destructive testing of the steam generator tubes. The steam generator tube specimens, 16 mm by 1.5 mm, are made of AISI 321 steel with stress corrosion cracks. They were tested by the single-frequency eddy current inspection method. Samples with known flaws were metallographically sectioned to determine the actual extent of corrosion degradation. The relation between measurement of the tube wall corrosion damage and actual extent of corrosion attack or stress corrosion cracking (SCC) was determined.Pressurized specimens with machined notches of various geometries were tested up to failure. The effect of flaw depth and length on the burst pressure were evaluated.  相似文献   

2.
核电蒸汽发生器传热管在微幅磨损与交变载荷的作用下形成微动疲劳,导致其表面裂纹萌生和扩展乃至破裂,从而影响反应堆的安全. 为研究径向载荷以及轴向交变应力对690合金管微动疲劳寿命的影响规律,开展690合金管管材的微动疲劳试验,获得690合金管管材的微动疲劳寿命曲线,并与相关研究数据进行对比分析,以便探讨材料在微动疲劳下的寿命模型. 对不同载荷下的690合金管试样的磨痕表面进行三维形貌和扫描电镜观测,分析磨损表面的损伤机理;对不同载荷下的690合金管试样断口的宏观与微观形貌进行表征,分析裂纹萌生、起裂过程及其失效机理. 结果表明690合金管与403不锈钢(SS)抗振条间的磨损机理为剥层及磨粒磨损;690合金管在径向载荷作用下于微动磨损处产生裂纹源,裂纹在轴向交变应力的作用下不断向内部扩展,最终导致断裂;其断裂形式为解理疲劳断裂.   相似文献   

3.
为了研究叠层橡胶隔震支座的受拉性能及开裂破坏机理,本文基于叠层橡胶隔震支座橡胶夹层的受拉分析模型及橡胶夹层的应力与位移分布计算公式,分析不同形状系数的橡胶支座橡胶夹层的应力分布与变形规律(如橡胶层内外自由边的变形形状),并基于理论分析结果,采用开裂能理论研究橡胶夹层的开裂能密度及梯度分布,据此分析橡胶夹层的开裂发生与发展规律,揭示其开裂破坏机理。最后通过叠层橡胶隔震支座的受拉性能试验进一步分析对比,试验结果表明了采用开裂能密度与梯度分析橡胶夹层的开裂破坏机理的可行性与合理性。  相似文献   

4.
为研究拉伸荷载下分支裂隙对破坏模式的影响,保持主裂隙参数不变,改变分支裂隙倾角和长度,利用扩展有限元方法模拟了弯折裂隙的动态扩展,总结了分支裂隙参数变化对破坏模式的影响.利用ABAQUS中的轮廓积分计算了分支裂隙尖端应力强度因子,并根据最大周向应力准则计算起裂角.结果表明:拉伸荷载下分支裂隙出现三种破坏模式;分支裂隙倾...  相似文献   

5.
铅冷钠冷快堆核电设备中的蒸汽发生器,有着在液态金属和水之间进行热交换的作用,其换热部分由排列的换热管组成。贴合式的双壁管是一种具有高换热效率及抵抗管裂纹扩展的管材,适合于这种应用环境。这种管材的内外管间存在残余压力,这是内外管紧贴的标志。然而在经历升至高温又降温的过程后,内外管间残余压力有可能消失引起两管脱开。为了得知温度对贴合式双壁金属管的具体影响,本文设计了一种拉伸法来制备双壁管,并同时采用有限元数值模拟管的加工制备过程并得到了内外管间的残余应力,再对加温后降温的过程进行模拟,分析换热管残余应力和应变状态进行了分析的变化,并通过初步试验来进行验证。通过研究,结果表明温度变化引起的塑性变形是管间残余压力变化的主要原因。通过控制管的加工过程来控制管材加工程度的方法,可望应对温度变化对管稳定性的影响。  相似文献   

6.
A micromechanics analytical model based on the consistent shear lag theory is developed for predicting the failure modes in fiber reinforced unidirectional stiff matrix composites. The model accounts for a relatively large matrix stiffness and hence its load carrying capacity. The fiber and matrix stresses are established as functions of the applied stress, crack geometry, and the microstructural properties of the constituents. From the predicted stresses, the mode of failure is established based on a point stress failure criterion. The role of the microstructural parameters of the constituents on the failure modes such as self-similar continuous cracking, crack bridging and debonding parallel to the fibers is assessed.  相似文献   

7.
For shell-and-tube heat exchangers, tubesheet cracking is a major failure form. Owing to complicated structures, loadings and environments, mechanisms for the crack nucleation and propagation often puzzle engineers and as a result, it is hard to take effective measures to prevent this kind of failure from happening again. In this paper, three dimensional finite element models were established to investigate a real tubesheet cracking with the emphasis on the driving forces for the crack propagation from a fracture mechanics point of view. Three different loadings, namely residual expansion stress, crack face pressure and transverse pressure, and three crack growth patterns were considered. In order to obtain the residual stresses, the hydraulic expanding process of tube-to-tubesheet joint was simulated. Residual contact pressures between the tube and tubesheet and the induced residual stress distributions in the tubesheet were computed. The possibility for crack propagation in the tubesheet under the action of the different loadings was investigated in terms of the strain energy density factor. Results show that surface crack propagation may be driven by all the three loadings especially the transverse pressure. But when surface cracks come into the interior of the tubesheet along the thickness, as acted along the whole tubesheet thickness, the residual expansion stress would play key roles in crack propagation.  相似文献   

8.
缺口件疲劳寿命分布预测的有效应力法   总被引:1,自引:0,他引:1  
本文提出了一种由光滑件疲劳寿命试验数据预测缺口件疲劳寿命分布的有效应力法。该方法中缺口件的裂纹可能萌生表面被分解成一个个微元,整个表面可看成是这些微元组成的一个串联模型,按照串联概率失效模型,缺口件的疲劳强度失效概率就可以由各微元的疲劳强度失效概率计算得到,其中微元的疲劳强度失效概率是由光滑件的疲劳强度失效概率通过最弱环节理论计算得到的。在缺口件的疲劳强度失效概率表达式中,引入了有效应力的概念,用它查取光滑件的疲劳寿命试验数据就可以直接得到缺口件的疲劳寿命分布。该方法可以同时考虑到应力梯度和试件尺寸对缺口件疲劳寿命分布的影响。进行了材料LY12CZ的带中心孔缺口件的寿命算例分析,预测结果和试验结果吻合良好,表明该方法是有效的。  相似文献   

9.
Uncertainty analysis and parametric studies are presented for estimating the fatigue failure probability of surface cracks in silicon nitride ball bearings subjected to rolling contact fatigue. Uncertainty quantification of input parameters are presented first based on experimental data, inspection capability, and geometric reasoning. Surrogate models for equivalent stress intensity factors are then used for uncertainty propagation, which are built upon high fidelity finite element modeling with half-penny-shaped surface cracks. Instead of black-box type surrogate modeling, physical observations are employed to decompose the high dimensional surrogate model into multiple one-dimensional models. The cross-validation technique is used to find the best surrogate that has the smallest prediction variance. The probability of failure is estimated using Monte Carlo simulation and surrogate models. The parametric studies show that reducing the maximum crack size (by limiting inspection threshold) and increasing the fatigue threshold (by improving fracture toughness of a material) are the most effective ways of reducing the probability of failure. For example, decreasing the maximum crack size by 4.4% and increasing the lowest fracture threshold by 2.8% results in the reduction of probability of failure by 40%. Ball survivability increases with decreasing ball diameter, for a given peak Hertzian stress. In order to apply the current study to hybrid ball bearing design, the survivability results are generalized through non-dimensionalization.  相似文献   

10.
张学尧  杨栋 《力学与实践》2016,38(4):403-406
利用自主研制的对流加热原位开采模拟实验台和真三轴压力机,研究了不均匀地应力状态下注蒸汽花岗岩热破裂的破裂规律.在本次试验条件下,花岗岩发生脆性破裂温度为483℃,蒸汽压力为10.6 MPa;高温高压蒸汽作用下,花岗岩除了在沿着垂直于最小主应力方向产生主裂缝,还会由于热破裂,在其他方向产生一定数量随机分布的次生裂缝;不同方向裂缝的形成,对于形成相互连通的空问裂隙网络有实际意义,从而有助于提高地热开采效率.  相似文献   

11.
混凝土三点弯曲梁裂缝断裂全过程数值模拟研究   总被引:3,自引:1,他引:2  
考虑裂缝黏聚力的作用,基于Paris位移公式推导出混凝土三点弯曲梁裂缝扩展过程中断裂过程区上的裂缝张开位移的解析表达式.采用起裂韧度作为裂缝起裂及扩展的判断标准,提出了荷载作用下混凝土裂缝起裂、扩展及失稳破坏全过程的数值模拟方法,并分别与国内外断裂试验实测值及有限元计算值进行了比较.结果表明,本文提出的数值模拟方法形式简单且精度较好.  相似文献   

12.
This article describes the examination, by three-dimensional photoelasticity, of the tube plate of a sodium steam generator. The tube plate is flat on the side of the tube bundle (121 tubes) and spherical (concave) on the other side. The photoelastic model was made by precision casting, there being no glued joints at the points which are important from the point of view of stresses, such as the tube-tube plate junctions. Both the stress distribution along important sections and the stress concentrations in different types of tube-tube plate junctions due to the internal pressure were determined. The investigation described in this article was carried out in the framework of the Association—Euratom TNO/RCN on Fast Reactors, on behalf of the TNO—Neratoom Sodium Technology Project.  相似文献   

13.
An analytical model is presented for a unidirectional composite with a matrix crack straddling across rubber-coated fiber reinforcements. An expression is derived for the energy released in matrix cracking. A penny-shaped matrix crack configuration is chosen as an example. With the aid of Hankel's transform, a linear integral equation is derived and solved numerically for the reinforcement stress and energy release in terms of a parameter λ that depends on the composite material and crack geometry. The maximum stress intensity factor for a matrix crack in the unidirectional composite increases monotonically with λ, attaining the largest value for a crack in a homogeneous matrix material.  相似文献   

14.
International Applied Mechanics - During the operation of a steam generator (SG), the heat-exchange tubes (HET) and SG surface are sludged because of the inappropriate chemical and thermal...  相似文献   

15.
刚体-弹簧元模型是一种离散化分析模型,可以反映连续体从开裂到破坏不连续过程的真实裂缝形态。本文在总结既有相关研究的基础上,引入并程序化刚体-弹簧元模型用于混凝土构件开裂破坏行为研究,特别是有关混凝土构件开裂后直至破坏的裂缝真实形态研究。首先确定了三维刚体-弹簧元模型中刚体单元的划分、弹簧元的特性(混凝土材料本构关系施加于弹簧元)、刚体单元与弹簧元装配方式、钢筋本构关系及其与混凝土相互作用,然后实现了刚体-弹簧元模型用于混凝土构件开裂破坏行为研究的程序化,并以剪切破坏的钢筋混凝土构件进行实例验证。结果表明,基于刚体-弹簧元模型的程序可以较为准确地反映该钢筋混凝土构件从开裂到破坏真实裂缝形态。  相似文献   

16.
The shock-tube model for a hydrothermal eruption in a geothermal reservoir (Fullard and Lynch, Trans Porous Med, 2011) is used to simulate eruptions that have a steam phase present near the surface in the form of a steam cap or a large crack. Simulations are performed with various steam cap/crack depths and it is shown that the presence of a steam phase greatly reduces the size of an eruption. We show that a steam cap type eruption is physically unlikely because of the large pressure differences required, but conclude that rock cracking is potentially a viable initiation mechanism for a hydrothermal eruption.  相似文献   

17.
百万核电汽轮机红套低压转子工作环境的蒸汽参数较低,各级轮盘均处于湿度较大的工作区域,易产生应力腐蚀,引起裂纹萌生和扩展.为提高轮盘的抗腐蚀能力,降低工作应力是一个有效的方法.通过热处理方法,在轮盘表面形成预压应力以抵消部分旋转拉应力是可行的方法,而产生适当深度和大小的预压应力则需对热处理过程进行谨慎的设计.本文以汽轮机轮盘为研究对象,建立轴对称有限元模型,通过对ABAQUS软件的二次开发,实现对轮盘热处理过程的温度场及应力场进行数值模拟.计算综合考虑了非线性的材料热物性参数、力学性能参数、表面换热系数及不同材料组织转变的相变潜热、热物性参数和力学参数,通过对不同热处理方法得到的残余应力场的比较,获得了较合理的水冷方式,为热处理工艺确定提供参考.  相似文献   

18.
To achieve certain properties, semiconductor adhesives and molding compounds are made by blending filler particles with polymer matrix. Moisture collects at filler particle/polymer matrix interfaces and within voids of the composite. At reflow temperatures, the moisture vaporizes. The rapidly expanding vapor creates high internal pressure on pre-existing voids and particle/matrix interfaces. The simultaneous action of thermal stresses and internal vapor pressure drives both pre-existing and newly nucleated voids to grow and coalesce causing material failure. Particularly susceptible are polymeric films and adhesives joining elastic substrates, e.g. Ag filled epoxy. Several competing failure mechanisms are studied including: near-tip void growth and coalescence with the crack; extensive void growth and formation of an extended damaged zone emanating from the crack; and rapid void growth at highly stressed sites at large distances ahead of the crack, leading to multiple damaged zones. This competition is driven by the interplay between stress elevation induced by constrained plastic flow and stress relaxation due to vapor pressure assisted void growth.A model problem of a ductile film bonded between two elastic substrates, with a centerline crack, is studied. The computational study employs a Gurson porous material model incorporating vapor pressure effects. The formation of multiple damaged zones is favored when the film contains small voids or dilute second-phase particle distribution. The presence of large voids or high vapor pressure favor the growth of a self-similar damage zone emanating from the crack. High vapor pressure accelerates film cracking that can cause device failures.  相似文献   

19.
Surface-mount plastic encapsulated microcircuits (PEM) are susceptible to temperature- and moisture-induced failures during reflow soldering. Adhesive failures in PEMs are studied using a model problem of a ductile adhesive joining two elastic substrates. The polymeric adhesive contains a centerline crack. The adhesive film is stressed by remote loading and residual stresses. Voids in the adhesive are pressurized by rapidly expanding water vapor. The computational study addresses three competing failure mechanisms: (i) extended contiguous damage zone emanating from the crack; (ii) multiple damage zones forming at distances of several film thicknesses ahead of the crack; and (iii) extensive damage developing along film–substrate interfaces. The second failure mechanism is found in low porosity adhesives, while the first is dominant in high porosity adhesives. The first is also the likely failure mode when voids in the adhesive are subjected to high vapor pressure. The third damage mechanism is operative in low porosity adhesives subjected to high residual stress. In general, both residual stress and vapor pressure exert pronounced effects on failure modes. Vapor pressure, in particular, accelerates voiding activity and growth of the damage zone offering insights into the catastrophic nature of popcorn cracking.  相似文献   

20.
螺旋管式蒸汽发生器由于其结构紧凑,换热性能好,体积小优点,在快堆和高温气冷堆中被广泛采用。广西根据200MW高温气冷堆蒸汽发生器的结构参数建立了实验模型,并对在横向气流激励下管阵的流弹不稳定性进行了实验研究。试验测量了螺旋管管阵在横向气流冲刷下的流体力系数,这一实验结果将有助于进一步了解螺旋管管阵在横向气流激励下的振动特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号