首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preparation and properties as well as some reactions of a series of arylcarbonylbis(triphenylphosphine)iridium(I) complexes [Ir(Ar)(CO)(PPh3)2] (Ar = C6H5, C6F5, 2-C6H4CH3, 3-C6H4CH3, 4-C6H4CH3, 2-C6H4OCH3, 2,6-C6H3-(OCH3)2, 4-C6H4N(CH3)2, 3-C6H4Cl, 4-C6H4Cl, 4-C6H4Cl, 3-C6H4CF3, 4-C6H4CF3) are described, and the most important IR data as well as the 31P NMR parameters of these, without exception trans-planar, compounds are given.

Some of the complexes react with molecular oxygen to form well defined dioxygen adducts [Ir(Ar)(O2)(CO)(PPh3)2] (Ar = C6H5, 3-C6H4CH3, 4-C6H4CH3). Complexes with ortho-substituted aryl ligands are not oxygenated. This effect is referred to as a steric shielding of the metal center by the corresponding ortho-substituents. With SO2 the similar irreversible addition compound [Ir(4-C6H4CH3)-(SO2)(CO)(PPh3)2] is obtained. Sulfur dioxide insertion into the Ir---C bond cannot be observed.

The first step of the reaction between [Ir(4-C6H4CH3)(CO)(PPh3)2] and hydrogen chloride involves an oxidative addition of HCl to give [Ir(H)(Cl)(4-C6-H4CH3)(CO)(PPh3)2]. Ir---C bond cleavage by reductive elimination of toluene from the primary adduct does not occur except at elevated temperature.  相似文献   


2.
The acid–base chemistry of some ruthenium ethyne-1,2-diyl complexes, [{Ru(CO)2(η-C5H4R)}22-CC)] (R=H, Me) has been investigated. Initial protonation of [{Ru(CO)2{η-C5H4R}}22-CC)] gave the unexpected complex cation, crystallised as the BF4 salt, [{Ru(CO)2(η-C5H4R}}33-CC)][BF4] (R=Me structurally characterised). This synthesis proved to be unreliable but subsequent, careful protonation experiments gave excellent yields of the protonated ethyne-1,2-diyl complexes, [{Ru(CO)2{η-C5H4R)}2212-CCH)](BF4) (R=Me structurally characterised) which could be deprotonated in high yield to return the starting ethyne-1,2-diyl complexes.  相似文献   

3.
The monocyclooctatetraene uranium complex [U(COT)(I)2(THF)2] (COT=η-C8H8; THF=tetrahydrofuran), isolated from the reaction of bis(cyclooctatetraene)uranium with iodine, is a precursor for the synthesis of the alkyl derivatives [U(COT)(CH2Ph)2i (HMPA) 2], [U(COT)(CH2SiMe3)2(HMPA)] (HMPA=hexamethyl phosphorous triamide) and [U(COT)CH2SiMe3)3] [Li(THF)3] and of the mixed-ring compounds [U(COT)(η-C5R5)(I)] (R=H or Me). The last were used to prepare the amide and alkyl complexes [U(COT)(η-C5H5)(N{SiMe3}2)] and [U(COT)(η-C5Me5)(CH2SiMe3)].  相似文献   

4.
The dimethylphosphino substituted cyclopentadienyl precursor compounds [M(C5Me4CH2PMe2)], where M=Li+ (1), Na+ (2), or K+ (3), and [Li(C5H4CR′2PMe2)], where R′2=Me2 (4), or (CH2)5 (5), [HC5Me4CH2PMe2H]X, where X=Cl (6) or PF6 (7) and [HC5Me4CH2PMe2] (8), are described. They have been used to prepare new metallocene compounds, of which representative examples are [Fe(η-C5R4CR′2PMe2)2], where R=Me, R′=H (9); R=H and R′2=Me2 (10), or (CH2)5 (11), [Fe(η-C5H4CMe2PMe3)2]I2 (12), [Fe{η-C5Me4CH2P(O)Me2}2] (13), [Zr(η-C5R4CR′2PMe2)2Cl2], where R=H, R′=Me (14), or R=Me, R′=H (15), [Hf(η-C5H4CMe2PMe2)2]Cl2] (16), [Zr(η-C5H4CMe2PMe2)2Me2] (17), {[Zr(η-C5Me4CH2PMe2)2]Cl}{(C6F5)3BClB(C6F5)3} (18), [Zr{(η-C5Me4CH2PMe2)2Cl2}PtI2] (19), [Mn(η-C5Me4CH2PMe2)2] (20), [Mn{(η-C5Me4CH2PMe2B(C6F5)3}2] (21), [Pb(η-C5H4CMe2PMe2)2] (23), [Sn(η-C5H4CMe2PMe2)2] (24), [Pb{η-C5H4CMe2PMe2B(C6F5)3}2] (25), [Pb(η-C5H4CMe2PMe2)2PtI2] (26), [Rh(η-C5Me4CH2PMe2)(C2H4)] 29, [M(η,κP-C5Me4CH2PMe2)I2], where M=Rh (30), or Ir, (31).  相似文献   

5.
Six new cluster derivatives [Rh2Co2(CO)6(μ-CO)442-HCCR)] (R=FeCp2 1, CH2OH 2, (CH3O)C10H6CH(CH3)COOCH2CCH 3) and [RhCo3(CO)6(μ-CO)442-HCCR)] (R=FeCp2 4, CH2OH 5, (CH3O)C10H6CH(CH3)COOCH2CCH 6) were obtained by the reactions of [Rh2Co2(CO)12] and [RhCo3(CO)12] with substituted 1-alkyne ligands HCCR [R=FeCp2 7, CH2OH 8, (CH3O)C10H6CH(CH3) COOCH2CCH 9] in n-hexane at room temperature, respectively. Alkynes insert into the Co---Co bond of the tetranuclear clusters to give butterfly clusters. [Rh2Co2(CO)6(μ-CO)442-HCCFeCp2)] (1) was characterized by a single-crystal X-ray diffraction analysis. Reactions of 1, 2 with 7, 8 and ambient pressure of carbon monoxide at 25 °C gave two known cluster complexes [Co2(CO)62, η2-HCCR)] (R=FeCp2 10, CH2OH 11), respectively. All clusters were characterized by element analysis, IR and 1H-NMR spectroscopy.  相似文献   

6.
The complexes [Fe{η-C5H4---(E)---CH=CH---4-C6H4CCX}2] [X=SiMe3 (1), H (2), Au(PCy3) (3), Au(PPh3) (4), Au(PMe3) (5), RuCl(dppm)2 (7), RuCl(dppe)2 (8)] and [Fe{η-C5H4---(E)---CH=CH---4-C6H4CH=CRuCl(dppm)2}2](PF6)2 (6) have been prepared and the identities of 1 and 7 confirmed by single-crystal X-ray structural studies. Complexes 1–8 exhibit reversible oxidation waves in their cyclic voltammograms attributed to the FeII/III couple of the ferrocenyl groups, 6–8 also showing reversible (7, 8) or non-reversible (6) processes attributed to Ru-centered oxidation. Cubic nonlinearities at 800 nm by the Z-scan method are low for 1–5; in contrast, complexes 6 and 7 exhibit large negative γreal and large γimag values. A factor of 4 difference in γ and two-photon absorption cross-section σ2 values for 6 and 7 suggest that they have potential as protically switchable NLO materials.  相似文献   

7.
The compounds (π-C5H5)(CO)2LM-X (L = CO, PR3; M = Mo, W; X = BF4, PF6, AsF6, SbF6) react with H2S, p-MeC6H4SH, Ph2S and Ph2SO(L′) to give ionic complexes [(π-C5H5)(CO)2LML′]+ X. Also sulfur-bridged complexes, [(π-C5H5)(CO)3W---SH---W(CO)3(π-C5H5)]+ AsF6 and [(π-C5H5)(CO)3M-μ-S2C=NCH2Ph-M(CO)3(π-C5H5)], have been obtained. Reactions with SO2 and CS2 have been examined.  相似文献   

8.
[1,8-C10H6(NR)2]TiCl2 (3; R=SiMe3, SiiBuMe2, SiiPr3) complexes have been prepared from dilithio salts [1,8-C10H6(NR)2]Li2 (2) and TiCl4 in diethyl ether in moderate yields (60–63%). These complexes showed significant catalytic activities for ethylene polymerization and for ethylene/1-hexene copolymerization in the presence of methylaluminoxane (MAO), methyl isobutyl aluminoxane (MMAO), AliBu3– or AlEt3–Ph3CB(C6F5)4 as a cocatalyst. The catalytic activities performed in heptane (cocatalyst MMAO) were higher than those carried out in toluene (cocatalyst MAO): 709 kg-PE/mol-Ti·h could be attained for ethylene polymerization by using [1,8-C10H6(NSiiBuMe2)2]TiCl2–MMAO catalyst system.  相似文献   

9.
The syntheses of the 1,3,5-trimethyl- and tri-tert-butyl-1,3,5-triazacyclohexane-supported imido complexes [M(NR)(R′3tach)Cl2] (M = Ti or Zr (NMR only); R = But or 2,6-C6H3Pri2; R′ = Me or But) are reported, along with that of the thermally robust dibenzyl derivative [Ti(NBut)(Me3tach)(CH2Ph)2]. The tert-butylimido ligand in [Ti(NBut)(Me3tach)Cl2] undergoes exchange with ArNH2 (Ar = 4-C6H4Me or 2,6-C6H4Me or 2,6-C6H3Pri2) to form the corresponding arylimides [Ti(NAr)(Me3tach)Cl2]. The Me3tach ring in [Ti(NR)(Me3tach)Cl2] undergoes slow exchange with But3tach or Me3tacn (1,4,7-trimethyl-1,4,7-triazacyclononane) to give the ring-exchanged products [Ti(NR)(But3tach)Cl2] and [Ti(NR)(Me3tacn)Cl2], respectively. The complexes [Ti(NR)(Me3tach)X2] (R = But or 2,6-C6H3Pri2; X = Cl or CH2Ph) exhibit room-temperature dynamic NMR behaviour via an unusual trigonal twist of the facially coordinated Me3tach ligand, and the activation parameters for these processes have been measured and are discussed. The X-ray structures of [Ti(NR)(But3tach)Cl2] (R = But or 2,6-C6H3Pri2) and [Ti(NBut)(Me3tach)(X)2] [X= Cl or CH2Ph) are reported. Me3tach and But3tach = 1,3,5-trimethyl- and tri-tert-butyl-1,3,5-triazacyclohexane, respectively.  相似文献   

10.
The reactions of RNHSi(Me)2Cl (1, R=t-Bu; 2, R=2,6-(Me2CH)2C6H3) with the carborane ligands, nido-1-Na(C4H8O)-2,3-(SiMe3)2-2,3-C2B4H5 (3) and Li[closo-1-R′-1,2-C2B10H10] (4), produced two kinds of neutral ligand precursors, nido-5-[Si(Me)2N(H)R]-2,3-(SiMe3)2-2,3-C2B4H5, (5, R=t-Bu) and closo-1-R′-2-[Si(Me)2N(H)R]-1,2-C2B10H10 (6, R=t-Bu, R′=Ph; 7, R=2,6-(Me2CH)2C6H3, R′=H), in 85, 92, and 95% yields, respectively. Treatment of closo-2-[Si(Me)2NH(2,6-(Me2CH)2C6H3)]-1,2-C2B10H11 (7) with three equivalents of freshly cut sodium metal in the presence of naphthalene produced the corresponding cage-opened sodium salt of the “carbons apart” carborane trianion, [nido-3-{Si(Me)2N(2,6-(Me2CH)2C6H3)}-1,3-C2B10H11]3− (8) in almost quantitative yield. The reaction of the trianion, 8, with anhydrous MCl4 (M=Ti and Zr) in 1:1 molar ratio in dry tetrahydrofuran (THF) at −78 °C, resulted in the formation of the corresponding half-sandwich neutral d0-metallacarborane, closo-1-M[(Cl)(THF)n]-2-[1′-η1σ-N(2,6-(Me2CH)2C6H3)(Me)2Si]-2,4-η6-C2B10H11 (M=Ti (9), n=0; M=Zr (10), n=1) in 47 and 36% yields, respectively. All compounds were characterized by elemental analysis, 1H-, 11B-, and 13C-NMR spectra and IR spectra. The carborane ligand, 7, was also characterized by single crystal X-ray diffraction. Compound 7 crystallizes in the monoclinic space group P21/c with a=8.2357(19) Å, b=28.686(7) Å, c=9.921(2) Å; β=93.482(4)°; V=2339.5(9) Å3, and Z=4. The final refinements of 7 converged at R=0.0736; wR=0.1494; GOF=1.372 for observed reflections.  相似文献   

11.
Liquid crystalline 4-XC6H4N=NC6H4X-4′ [X = C4H9 (1a), C1OH21 (1b), OC4H9 (1c), OC8H17(1d)] can be easily prepared in high yields from the corresponding anilines. In order to study the influence of metals on the thermal properties of these materials, we have obtained adducts [AuCl 3(4-C4H9OC6H4N=NC6H4OC4H9-4′)] (2) and [Ag(OC1O3)L2] [L = 4-XC6H4N=NC6H4X-4′; X = OC4H, (3a), OC8H17 (3b)]. The silver adducts show themotropic behaviour. Mercuriation of dialkylazobenzenes 1a-b takes place with [Hg(OAc)2] and LiCl to give [Hg(R)Cl] [R = C6H3(N=NC6H4X-4′)-2, X-5; X = C4H9 (bpap) (4a), C10H21 (dpap) (4b)] while dialkoxyazobenzenes 1c–d require [Hg (OOCCF3)2] to obtain [Hg(R)Cl] [R = C6H3(N---NC6H4X-4′)-2, X-5; X = OC4H9 (bxpap) (4c), OC 8H17 (4d)]. 4a-c react with NaI to give [HgR2] [R= bpap (5a), dpap (5b), bxpap (5c), oxpap (5d)l. Both chloroaryl-, 4a and 4c, and diaryl-mercurials, 5a and 5c, act readily as transmetailating agents towards [Me4N] [AuCl4] in the presence of [Me4N]Cl to give [Au(η2-R)Cl2] [R = bpap (6a), bxpap (6b)]. After reaction of [AuCl 3(tht)] (tht = tetrahydrothiophene) with [Me4N]Cl and 4b (1:2:1), [Me4N][Au(dpap)Cl3] (7) can be isolated. C---H activati bxpap (8b)]. None of the complexes 4–8 shows mesomorphic behaviour.  相似文献   

12.
Reaction of ansa-cyclopentadienyl pyrrolyl ligand (C5H5)CH2(2-C4H3NH) (2) with Ti(NMe2)4 affords bis(dimethylamido)titanium complex [(η5-C5H4)CH2(2-C4H3N)]Ti(NMe2)2 (3) via amine elimination. A cyclopentadiene ligand with two pendant pyrrolyl arms, a mixture of 1,3- and 1,4-{CH2(2-C4H3NH)}2C5H4 (4), undergoes an analogous reaction with Ti(NMe2)4 to give [1,3-{CH2(2-C4H3N)}25-C5H3)]Ti(NMe2) (5). Molecular structures of 3 and 5 have been determined by single crystal X-ray diffraction studies.  相似文献   

13.
Organolanthanide chloride complexes [(CH3OCH2CH2C5H4)2Ln(μ-Cl)]2 (Ln = La, Pr, Ho and Y) react with excess NaH in THF at 45°C to give the dimeric hydride complexes [(CH3OCH2CH2C5H4)2Ln(μ-H)]2, which have been characterized by IR, 1H NMR, MS and XPS spectroscopy, elemental analyses and X-ray crystallography. [(CH3OCH2CH2C5H4)2Y(μ-H)]2 crystallizes from THF/n-hexane at −30°C, in the triclinic space group P1 with a = 8.795(2) Å, b = 11.040(1) Å, c = 16.602(2) Å, = 93.73(1)°, β = 91.82(1)°, γ = 94.21(1)°, Dc = 1.393 gcm−3 for Z = 2 dimers. However, crystals of [(CH3OCH2CH2C5H4)2Ho(μ-OH)]2 were obtained by recrystallization of holmium hydride in THF/n-hexane at −30°C, in the orthorhombic space group Pbca with a = 11.217(2) Å, b = 15.865(7) Å, c = 17.608(4) Å, Dc = 1.816 gcm−3 for Z = 4 dimers. In the complexes of yttrium and holmium, each Ln atom of the dimers is coordinated by two substituted cyclopentadienyl ligands, one oxygen atom and two hydrogen atoms (for the Y atom) or two hydroxyl groups (for the Ho atom) to form a distorted trigonal bipyramid if the C(η5)-bonded cyclopentadienyl is regarded as occupying a single polyhedral vertex.  相似文献   

14.
Reactions of the extremely labile molybdenocene olefin complexe Mo(η5-C5H5)2[(Z)-C6H5CH=CHC6H5] with heteroallenes X=C=Y (X=C=Y = CS2, (p-tolyl)NCN(p-tolyl), (C6H5)2CCO) gives the corresponding heteroallene complexes of molybdenocene Mo(η5-C5H5)2(X=C=Y) in high yields. Spectroscopic data clearly indicate a dihapto-coordination of the heteroallenes via the C=X bond (X = O, S, N).  相似文献   

15.
The reaction of [R-(R,R)]-(+)589-[(η5-C5H5){1,2-C6H4(PMePh)2}Fe(NCMe)]PF6 with (±)-AsHMePh in boiling methanol yields crystalline [R-[(R)-(R,R)]-(+)589)-[(η5-C5H5){1,2-C6H4(PMePh)2}Fe(AsHMePH)PF6, optically pure, in ca. 90% yield, in a typical second-order asymmetric transformation. This complex contains the first resolved secondary arsine. Deprotonation of the secondary arsine complex with KOBut at −65°C gives the diastereomerically pure tertiary arsenido-iron complex [R-[(R),(R,R)]]-[((η5-C5H5){1,2-C6H4(PMePh)2}FeAsMePh] · thf, from which optically pure [R-[(S),(R,R)]]-(+)589-[(η5-C5H5){1,2-C6H4(PMePh)2}Fe(AsEtMePh)PF6 is obtained by reaction with iodoethane. Cyanide displaces (R)-(−)589-ethylmethylphenylarsine from the iron complex, thereby effecting the asymmetric synthesis of a tertiary arsine, chiral at arsenic, from (±)-methylphenylarsine and an optically active transition metal auxiliary.  相似文献   

16.
The new diphenolato complexes [{Mo(NO){HB(dmpz)3}Cl}2Q] where dmpz = 3,5-dimethylpyrazolyl and Q = OC6H4(C6H4O (n = 1 or 2), OC6H4CR=CRC6H4O (R = H or Et), and OC6H4CH=CHC6H4CH=CHC6H4O have been prepared and their electrochemical properties (cyclic and differential pulse voltammetry) compared with previously reported analogues where Q = OC6H4O, OC6H4EC6H4O (E = SO2, CO and S), OC6H4 (CO)C6H4 C6H4(CO)C6H4O and 1,5- and 2,7-O2C10H6. The electrochemical interaction between the redox centres in the new complexes is very weak, in contrast to that in the 1,4-benzenediolato and naphthalendiolato species. The EPR spectra of the reduced mixed-valence species [{Mo(NO){HB(dmpz)3}Cl}2Q] where Q = 1,3- and 1,4-OC6H4O and OC6H4SC6H4O shows that they are valence-trapped at room temperature, whereas those of the dianions [{Mo(NO){HB(dmpz)3}Cl}2Q]2− where Q = 1,4-OC6H4O, OC6H4EC6H4O (E = CO or S) and OC6H4CH=CHC6H4CH=CHC6H4O shows that the unpaired spins on each molybdenum centre are strongly correlated (J, the spin exchange integral AMo, the metal-hyperfine coupling constant). The electrochemical properties and the comproportionation constants for the reaction [{Mo(NO){HB(dmpz)3} Cl}2Q] + [{Mo(NO){HB(dmpz)3}Cl}O]2]2−2[{Mo(NO) {HB(dmpz)3}Cl}2Q] where Q = diphenolato bridge, are compared with related compounds containing benzenediamido and dianilido bridges.  相似文献   

17.
INDOStudiesontheElectronicsStructureof(2,4-C7H11)2Yb(DME)FENGJian-nan,WANGZhi-zhong,ZHANGSo-bo,LIUJu-zheng(InstituteofTheoret...  相似文献   

18.
The reductive electrochemistry of compounds of the type CpFe(CO)2L (Cp = η-C5H5, η-C5Me5; L = SP(S)(OEt)2, SP(S)(OiPr)2) has been examined by polarography, cylic voltammetry and coulometry. The first one-electron reduction step leads to a bond rupture process with formation of a mercury compound, [CpFe(CO)2]2Hg, at a mercury electrode and the corresponding dimer species at a platinum electrode. The second reduction step corresponds to the reduction of the dimer [CpFe(CO)2]2, except in the polarographic reduction of pentamethylcyclopentadienyl compounds.  相似文献   

19.
Reactions of [(η6-arene)RuCl2]2 (1) (η6-arene=p-cymene (1a), 1,3,5-Me3C6H3 (1b), 1,2,3-Me3C6H3 (1c) 1,2,3,4-Me4C6H2(1d), 1,2,3,5-Me4C6H2 (1e) and C6Me6 (1f)) or [Cp*MCl2]2 (M=Rh (2), Ir (3); Cp*=C5Me5) with 4-isocyanoazobenzene (RNC) and 4,4′-diisocyanoazobenzene (CN–R–NC) gave mononuclear and dinuclear complexes, [(η6-arene)Ru(CNC6H4N=NC6H5)Cl2] (4a–f), [Cp*M(CNC6H4N=NC6H5)Cl2] (5: M=Rh; 6: M=Ir), [{(η6-arene)RuCl2}2{μ-CNC6H4N=NC6H4NC}] (8a–f) and [(Cp*MCl2)2(μ-CNC6H4N=NC6H4NC)}] (9: M=Rh; 10: M=Ir), respectively. It was confirmed by X-ray analyses of 4a and 5 that these complexes have trans-forms for the ---N=N--- moieties. Reaction of [Cp*Rh(dppf)(MeCN)](PF6)2 (dppf=1,1′-bis (diphenylphosphino)ferrocene) with 4-isocyanoazobenzene gave [Cp*Rh(dppf)(CNC6H4N=NC6H5)](PF6)2 (7), confirmed by X-ray analysis. Complex 8b reacted with Ag(CF3SO3), giving a rectangular tetranuclear complex 11b, [{(η6-1,3,5-Me3C6H3)Ru(μ-Cl}4(μ-CNC6H4N=NC6H4NC)2](CF3SO3)4 bridged by four Cl atoms and two μ-diisocyanoazobenzene ligands. Photochemical reactions of the ruthenium complexes (4 and 8) led to the decomposition of the complexes, whereas those of 5, 7, 9 and 10 underwent a trans-to-cis isomerization. In the electrochemical reactions the reductive waves about −1.50 V for 4 and −1.44 V for 8 are due to the reduction of azo group, [---N=N---]→[---N=N---]2−. The irreversible oxidative waves at ca. 0.87 V for the 4 and at ca. 0.85 V for 8 came from the oxidation of Ru(II)→Ru(III).  相似文献   

20.
Two organogold derivatives of diphenylmethane and diphenylethane, Ph3PAu(o-C6H4)CH2(C6H4-o)AuPPh3 (1) and Ph3PAu(o-C6H4)(CH2)2(C6H4-o)AuPPh3 (2), have been synthesized by the reaction of ClAuPPh3 with Li(o-C6H4)CH2(C6H4-o)Li and Li(o-C6H4)(CH2)2(C6H4-o)Li respectively. The interaction of 1 with dppe results in the replacement of the two PPh3 groups to give a macrocyclic compound (3) that includes an Au Au bond. Compounds 1 and 2 react with one or two equivalents of [Ph3PAu]BF4 to form new types of cationic complex [CH2(C6H4-o)2(AuPPh3)3]BF4 (4), [CH2(C6H4-o)2(AuPPh3)4](BF4)2 (5), and [(CH2)2(C6H4-o)2(AuPPh3)4](BF4)2 (6). Complexes 1–6 have been characterized by X-ray diffraction studies, FAB MS, and IR as well as by 1H and 31P NMR spectroscopy. A complicated system of Au H-C agostic interactions, involving the bridging alkyl groups (—CH2— and CH2-CH2—) of diphenylmethane and diphenylethane ligands, has been found to occur in complexes 1–3 and 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号