首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The differences between two differential Reynolds stress models (DRSM) and their corresponding explicit algebraic Reynolds stress models (EARSM) are investigated by studying fully developed axially rotating turbulent pipe flow. The mean flow and the turbulence quantities are strongly influenced by the imposed rotation, and is well captured by the differential models as well as their algebraic truncations. All the tested models give mean velocity profiles that are in good qualitative agreement with the experimental data. It is demonstrated that the predicted turbulence kinetic energy levels vary dramatically depending on the diffusion model used, and that this is closely related to the model for the evolution of the length-scale determining quantity. Furthermore, the effect of the weak equilibrium assumption, underlying the EARSMs, and the approximation imposed for 3D mean flows on the turbulence levels are investigated. In general the predictions obtained with the EARSMs rather closely follow those of the corresponding DRSMs.  相似文献   

3.
4.
This paper addresses a distinct and direct computational technique for calculating the characteristics of a thermally developed turbulent pipe flow in a circular pipe. The technique seeks to replace a partial differential energy equation into an equivalent ordinary differential energy equation. The latter is valid in the thermally developed region of the pipe. Numerical results show good agreement with experimental observations for gas and water flows over a wide range of Reynolds numbers.  相似文献   

5.
The turbulence characteristics of fully developed isothermal air flows through a symmetric trapezoidal duct were examined experimentally using Pitot tube and hot-wire anemometry over a Reynolds number range of 3.7–11.6×104. The measurements included local wall shear stress and the cross-sectional distributions of mean axial velocity, secondary velocities and Reynolds stresses. Four secondary flow cells were detected in a symmetric half of the duct. Although secondary velocity components were typically less than about 1% of the bulk axial velocity, their effect was especially pronounced on the distributions of turbulent kinetic energy and local wall shear stress.List of symbols a, b, c, d trapezoidal duct dimensions (Fig. 1) - A, B coefficients in log law (Table 1) - D h equivalent hydraulic diameter - f Darcy friction factor, (2D h /U b 2 ) (dP/dx) - k turbulent kinetic energy per unit mass, - k + dimensionless turbulent kinetic energy, k/( *)2 - P static pressure - Re Reynolds number, U b D h / - s distance along inclined wall, measured from top corner (Fig. 1) - u, v, w fluctuating components of the velocities in the x, y, z directions - u +, v +, w + dimensionless turbulence intensities; u 2/ *, v 2/ *, w 2/ * - u * local friction velocity, ( w /)1/2 - * average friction velocity, (¯gt/)1/2 - axial mean velocity (time-average) - U b average mean axial velocity - U sec resultant of ¯V and ¯W, (¯V 2+¯ 2)1/2 - U + dimensionless velocity, /u * - ¯V, ¯W mean velocities in the y, z directions (secondary velocities) - x axial direction - y, 2 horizontal and vertical directions (Fig. 1) - z + dimensionless distance from (and normal to) a wall, zu */v - distance from wall (at y=0) to location of maximum axial velocity - laminar dynamic viscosity - v kinematic viscosity - air density - w local wall shear stress - ¯ w average of local wall shear stresses over all walls - ¯ average wall shear stress, (dP/dx) (D h /4) - corner angle of trapezoidal duct (Fig. 1) A version of this paper was presented at the 10th Symposium on Turbulence, University of Missouri-Rolla, Sept. 22–24, 1986  相似文献   

6.
All three derivatives of the temperature fluctuation in a fully developed turbulent channel flow have been measured using a pair of parallel cold wires with fixed separations in either the x (streamwise), y (normal to the wall) or z (spanwise) direction. At several locations, measurements were also made, each for a range of y separations between the wires. These latter measurements were important for establishing a suitable method of correcting the data for the effect of wire separation, thus allowing the fixed separation data to be corrected. In the near-wall region, the corrected temperature dissipation is in good agreement with results from direct numerical simulations. The time scale ratio deduced from measurements and simulations agrees well with the theoretical wall value.  相似文献   

7.
An experimental study was carried out to investigate the turbulent water-flow structure over one-side micro-repeated ribs in a narrow two-dimensional rectangular channel by particle image velocimetry (PIV). Two rib pitch-to-height ratios p/k of 10 and 20 were investigated while the rib height was held constant at 4 mm. The rib height-to-channel equivalent diameter ratio k/De was 0.1. The streamwise mean velocity and turbulent kinetic energy fields in the fully developed flow region of the channel were calculated at three different positions of x=0, 3.8, and -6.2 mm, which corresponded to center, downstream, and upstream of the rib, respectively, and for two Reynolds numbers Re of 7,000 and 20,000. A large-scale turbulent eddy was generated by the rib promoter and then propagated into the mainstream flow, which led to the deformation of the velocity profile. Downstream of the rib, rotating and counter-rotating eddies were also generated by the rib promoter. The enhancement of the turbulent kinetic energy was not changed when the Reynolds number increased from 7,000 to 20,000 between p/k=20 and 10. The reattachment length LR was measured from velocity vector fields in the developing, fully developed, and exit regions of the flow over the range Re=1,400-50,000. The results showed that the ratio p/k and the Reynolds number had no significant effect on the reattachment length beyond a critical value of Re=15,000, where LR was found to be approximately 4 times the rib height.  相似文献   

8.
Laser-induced fluorescent dye visualization and image correlation velocimetry were employed to delineate near-wall turbulent structures in a pipe flow. The sweeping and ejection events near the wall and the downstream evolution of a large-scale eddy structure rotating in a counter-clockwise direction were clearly reflected in the instantaneous fluctuating velocity fields. This eddy structure was found to form mostly in the logarithmic region and to dominate the flow structures there, while the ejection and sweeping events in the log layer were greatly influenced by the existence of the large-scale eddy structure. Received: 29 January 2001 / Accepted: 22 October 2001  相似文献   

9.
Wall-mounted roughness features, such as ribs, are often placed along the walls of a channel to increase the convective surface area and to augment heat transfer and mixing by increasing turbulence. Depending on the relative roughness size and orientation, the ribs also have varying degrees of increased pressure losses. Designs that use ribs to promote heat transfer encompass the full range of having only a few streamwise ribs, which do not allow fully developed flow conditions, to multiple streamwise ribs, which do allow the flow to become fully developed. The majority of previous studies have focused on perturbing the geometry of the rib with little attention to the spatially and temporally varying flow characteristics and their dependence on the Reynolds number. A staggered rib-roughened channel study was performed using time-resolved digital particle image velocimetry (TRDPIV). Both the developing (entry region) and a fully developed region were interrogated for three Reynolds numbers of 2,500, 10,000, and 20,000. The results indicate that the flow was more sensitive to Reynolds number at the inlet than within the fully developed region. Despite having a similar mean-averaged flowfield structure over the full Reynolds number range investigated, the population and distribution of coherent structures and turbulent dissipation within the fully developed region were also found to be Reynolds number dependent. Exploring the time-accurate flow characteristics revealed that in addition to vortices shed from the rib shear layer, the region of the rib wake was governed by a periodic process of bursting of the wake vortices resulting in the intermittent ejection of the inter-rib recirculation region into the core flow. This periodic process was the driving mechanism resulting in mixing and heat transfer augmentation. A quadrant-splitting burst analysis was also performed to determine the characteristic frequency and duration of inter-rib bursting as well as the wake shedding frequency, both of which were determined to be Reynolds number dependent.  相似文献   

10.
Summary The fully developed mean turbulent pipe flow is analysed at large Reynolds number by the method of matched asymptotic expansions. From the study of various limiting processes, in the sense of Kaplun, a crucial intermediate limit is identified whose transverse dimension is of the order of geometric mean of the transverse dimensions of the classical inner and outer layers. The asymptotic expansions in the three layers (inner, intermediate and outer) are matched by the Millikan's argument leading to two overlap domains where velocity distribution is logarithmic but their slopes could be different. The measurements show that the sustantial log regions do in fact exist in the two overlap domains and the ratio of their slopes is 2.03. The present theory describes the velocity profile over a greater range when compared to the classical theory. The predictions of Reynolds stress and turbulent energy production are in remarkably good argreement with the data for almost entire turbulent flow region from the beginning of the buffer layer to the axis oj pipe.
Voll entwickelte turbulente Rohrströmung: eine Zwischenschicht
Übersicht Die voll entwickelte turbulente Rohrströmung wird für größere Reynolds-Zahlen mit der Methode der asymptotischen Entwicklungen untersucht, wobei eine wichtige Zwischenschicht identifiziert wird. Die asymptotischen Entwicklungen für drei Schichten (innere, mittlere und äußere) werden mit Hilfe von Übergangsbedingungen nach Millikan angepaßt. Messungen zeigen, daß wesentliche logarithmische Gebiete in Wirklichkeit vorhanden sind, wobei das Verhältnis ihrer Neigungen 2.03 ist. Die vorliegende Theorie beschreibt das Geschwindigkeitsprofil über einen größeren Bereich als die klassische Theorie.
  相似文献   

11.
In this paper large eddy simulation of the fully developed turbulent flow in a curved channel is carried out. The computational results are presented and compared with the experimental results of Eskinazi and Yeh[1]. It is shown that the numerical results of the present LES are reliable and the influence of the curvature on the turbulence feature is correctly revealed.  相似文献   

12.
13.
Streamwise pseudo-vortical motions near the wall in a fully-developed two-dimensional turbulent channel flow are clearly visualized in the plane perpendicular to the flow direction by a sophisticated hydrogen-bubble technique. This technique utilizes partially insulated fine wires, which generate hydrogen-bubble clusters at several distances from the wall. These flow visualizations also supply quantitative data on two instantaneous velocity components, and w, as well as the streamwise vorticity, x . The vorticity field thus obtained shows quasi-periodicity in the spanwise direction and also a double-layer structure near the wall, both of which are qualitatively in good agreement with a pseudo-vortical motion model of the viscous wall-region.List of symbols C i ,c i ,d i constants in Eqs. (2), (3) and (4) - H channel width (m) - Re H Reynolds number (= U c H/) - Re Reynolds number (= U c /) - T period (s) - t time (s) - U mean streamwise velocity (m/s) - U c center-line velocity (m/s) - u friction velocity (m/s) - u, , w velocity fluctuations (m/s) - x, y, z coordinates (m) - * displacement thickness (m) - momentum thickness (m) - mean low-speed streak spacing (m) - kinematic viscosity (m2/s) - phase difference - x streamwise vorticity fluctuation (1/s) - ( )+ normalized by u and - () root mean square value - () statistical average This paper was presented at the Ninth Symposium on Turbulence, University of Missouri-Rolla, October 1–3, 1984  相似文献   

14.
A modified model of turbulence is proposed to describe the processes of vertical transport in inhomogeneous turbulent flows. This model includes algebraic relations for the Reynolds stresses and turbulent-exchange coefficients. Using this model, the growth of the depth of a mixed layer under the action of the wind load in neutral and stable stratified near-wall flows has been predicted. The calculation results for a stable stratified flow that were obtained using the modified and standard two-parametric models of turbulence are compared with experimental data. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 6, pp. 57–64, November–December, 1998.  相似文献   

15.
A novel notion of turbulent structure the local cascade structure-is introduced to study the convection phenomenon in a turbulent channel flow. A space-time cross-correlation method is used to calculate the convection velocity. It is found that there are two characteristic convection speeds near the wall, one associated with small-scale streaks of a lower speed and another with streamwise vortices and hairpin vortices of a higher speed. The new concept of turbulent structure is powerful to illustrate the dominant role of coherent structures in the near-wall convection, and to reveal also the nature of the convection-the propagation of patterns of velocity fluctuations-which is scale-dependent.  相似文献   

16.
17.
A novel method is proposed that allows accurate estimates of the local wall shear stress from near-wall mean velocity data in fully developed pipe and channel flows. DNS databases are used to demonstrate the accuracy of the method and to provide the reliability requirements on the experimental data.To demonstrate the applicability of the method, near-wall LDA measurements in turbulent pipe and channel flows were performed. The estimated wall shear stress is shown to be accurate to within 1%. Streamwise mean velocity and turbulence intensity profiles normalized with the wall friction velocity at several Reynolds numbers are presented.The current research was funded in part by the European Community under the BRITE-EURAM program, Deutsche Forschungsgemeinschaft (Du 101/16-1,2) and Deutscher Akademischer Austauschdienst. The authors are also grateful to Professors F. Nieuwstadt, N. Kasagi, P. Moin and Drs. J. Kim and N. Gilbert for providing their direct simulation data.  相似文献   

18.
Three-dimensional fully developed turbulent fluid flow and heat transfer in a square duct are numerically investigated with the author's anisotropic low-Reynolds-number k-ε turbulence model. Special attenton has been given to the regions close to the wall and the corner, which are known to influence the characteristics of secondary flow a great deal. Hence, instead of the common wall function approach, the no-slip boundary condition at the wall is directly used. Velocity and temperature profiles are predicted for fully developed turbulent flows with constant wall temperature. The predicted variations of both local wall shear stress and local wall heat flux are shown to be in close agreement with available experimental data. The present paper also presents the budget of turbulent kinetic energy equation and the systematic evaluation for existing wall function forms. The commonly adopted wall function forms that are valid for two-dimensional flows are found to be inadequate for three-dimensional turbulent flows in a square duct.  相似文献   

19.
Three-component, coincident, time-resolved velocity measurements were obtained in the near wall region, y + < 100, of a fully developed turbulent pipe flow. The measurements were conducted in the ARL/PSU glycerin tunnel at a Reynolds number (Re h), based on pipe radius and centerline velocity, of 6436 and an Re of approximately 730. The reported data include velocity statistics up to fourth order, Reynolds stresses and three component, coincident turbulent velocity spectral estimates. The current data are generally in quite good agreement with the fully developed channel flow direct numerical simulation (DNS) results of Antonia et al. (1992) at Re 700 - 700. The accuracy of the current experimental data and the very good agreement with the DNS results provides evidence for the accuracy of the DNS solutions and thus Antonia's conclusions of very near wall, y + < 20, Re dependence on turbulent velocity statistics. The very good agreement between the low Re rectangular channel flow DNS results and the low Re flat plate turbulent boundary layer statistics of Karlsson and Johansson (1988) suggests that for y + < 30 statistics of similar flows of differing geometry may be compared on the basis of equal Re . The current data are available on disk or by anonymous ftp by the first author.  相似文献   

20.
 The mixing length theory is employed to simulate the fully developed turbulent heat transfer in annular-sector ducts with five apex angles (θ0=18,20,24,30,40) and four radius ratios (R o/R i=2,3,4,5). The Reynolds number range is 104105. The numerical results agree well with an available correlation which was obtained in following parameter range: θ0=18,20,24,30,40, R o/R i=4 and Re=1045×104. The present work demonstrates that the application range of the correlation can be much extended. Apart from the mixing length theory, the kɛ model with wall function and the Reynolds stress model are also employed. None of the friction factor results predicted by the three models agrees well with the test data. For the heat transfer prediction the mixing length theory seems the best for the cases studied. Received on 17 July 2000 / Published online: 29 November 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号