首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isotherm of ion exchange of Sr2+ and Na+ ions on iron-manganese nodules was obtained. It was suggested to describe the ion exchange by an equation analogous to the Langmuir isotherm equation. The limiting sorption and apparent ion exchange constant were calculated. The effective radius of sorbed strontium ions was determined.  相似文献   

2.
The sorption behavior of strontium and barium on kaolinite, bentonite and chlorite-illite mixed clay was studied by radioanalytical techniques using the batch method.90Sr (29.1 y) and133Ba (10.5 y) were used as radiotracers. Characterization of the solid matrices was done by FTIR and XRD spectrometries and specific surface area measurements. Synthetic groundwater was used as the aqueous phase. The variation of the distribution ratioR d, as a function of metal ion loading was examined. The sorption isotherms were fitted to various isotherm models. The sorption energies were calculated to be in the range of 8–10 kJ/mol suggesting an ion exchange type of sorption mechanism. In detailed experiments, chlorite-illite mixed clay was first presaturated with K+, Sr2+, Ca2+ and Al3+ ions, respectively, prior to sorption studies with Ba2+ ions. The results of Ca2+ pretreated chlorite-illite were very similar to those of natural chlorite-illite, suggesting that the Ba2+ ion exchanges primarily with the Ca2+ ion on the clay minerals.  相似文献   

3.
Sorption of Ni2 +, Cu2 +, Mn2 +, Fe3 +, and Cr3 + from model solutions with natural sorbents (clay, loam, sandy loam, zeolite) was studied. The optimal conditions of sorption were determined. The effect of pH and electrolytes on the sorption efficiency was studied.  相似文献   

4.
Sorption of Fe(III) cations on Cambrian blue clay is discussed in term of the Langmuir isotherm. The thermodynamic characteristics of sorption were determined. The Gibbs energies of formation of sorbed Fe(III) aqua and hydroxo cations were calculated. The role of hydroxo complexes in sorption was considered.  相似文献   

5.
A new ecomaterial, zirconyl molybdopyrophosphate (ZMPP), was prepared by a coprecipitation method. The removal of Cs+ and Sr2+ ions from simulated strong acid HLLW using the ion exchange process on ZMPP had been investigated. It showed that there are more than 90% Cs+ and Sr2+ removed from the simulated HLLW on ZMPP despite the presence of other metal ions, such as Na+, Al3+, Fe3+, etc. in excess. Then ZMPP may likely be a selective ion exchanger for the removal of 137Cs and 90Sr directly from strong acid HLLW.  相似文献   

6.
The separation of fission strontium from solutions of prolonged cooled nuclear fuel has been performed using ammoniummolybdatophosphate (AMP) columns. The sorption mechanism of bivalent ions on AMP has been investigated by column and batch experiments. A pure ion exchange of Sr2+ for two H+ or NH 4 + ions has been established. Conditions for the sorption and elution of fission strontium and other fission products on AMP columns are described.  相似文献   

7.
The adsorption behavior of Cs ions on a montmorillonite-type clay was investigated in the presence of potassium ions, using a radiotracer technique. The initial concentration of K+ added to the CsCl was between 10-4 and 10-1 mol/l. The addition of K+ to the CsCl solution at different concentrations (10-6-10-2 mol/l) reduced the amount of Cs+ adsorbed on clay. The maximum ratio of Cs+ exchanged, calculated from a linearized form of Langmuir plot was in agreement with the ion exchange isotherms of Cs-K ions. Sorption energy evaluated from the graph of corrected selectivity coefficients vs. equivalent fraction of Cs in the solid phase was compared to the energy values obtained from Dubinin-Radushkevich (D-R) isotherms. Freundlich isotherm parameters were used to characterize a site distribution function, which provides information about the affinity ratio of the adsorption sites of Cs+ and K+ ions. The ion exchange isotherm of Cs-K systems exhibited a Langmuir type curve for all K+ concentrations.  相似文献   

8.
Ion-exchange experiments were conducted at 25°C between the zeolite mineral clinoptilolite and aqueous solutions of Na+/Sr2+ (0.005, 0.05, and 0.5 N), K+/Sr2+ (0.05N), and K+/Ca2+ (0.05 N). The isotherm data were used to derive equilibrium constants and Gibbs energies for the ion-exchange reactions and Margules parameters for the zeolite solid solution. The Margules model, in combination with the Pitzer equations for activity coefficients of aqueous ions, was used to predict isotherms for ion exchange involving clinoptilolite and aqueous solutions of Na+/Sr2+, K+/Sr2+, and K+/Ca2+ over wide ranges of solution composition and concentration. The ion-exchange isotherms are strongly dependent on the total solution concentration. For Na+/Sr2+ ion exchange, isotherm values at 0.005 and 0.5 N predicted using thermodynamic parameters derived from the 0.05 N data showed excellent agreement with measured values. The model was also applied to calculations of aqueous composition based on the chemistry of coexisting zeolite phases. The results show that the aqueous composition can be predicted well from the composition of the zeolite, at least for systems that involved binary (two-cation) exchange. Because the thermodynamic model can be easily extended to ternary and more complicated mixtures, it may be useful for modeling ion-exchange equilibria in multicomponent systems.  相似文献   

9.
The sorption behavior of cesium on montmorillonite type clay was studied by using radioactivity measurements. Concentrations of Cs+ ions ranged from 10–6 to 10–2M. Cesium retention reduced with increasing salt concentration which was varied between 10–4 and 10–1M. Selectivity coefficients KCs–Na for the exchange between Cs and Na were calculated for different equivalent fractions of Cs on the solid phase. Using theK Cs–Na values, free energy change was found to be 7.8 kJ/mol. The data could be fitted to a Freundlich isotherm, and empirical Freundlich parameters enabled the generation of a site distribution function. By fitting the data to the Dubinin-Radushkevich (D-R) isotherm, a mean energy of sorption of 8.6 kJ/mole was calculated which corresponds to the energy of ion exchange reactions. The values of energy changes calculated by using two different methods were in good agreement.  相似文献   

10.
A new inorganic ion-exchanger, zirconium tugnstoarsenate, has been synthesized which has been characterized by chemical analysis, thermogravimetry, X-ray and infrared spectroscopy. The ion exchanger has been found to be stable in acids and neutral salt solutions. The Kd values for 30 metal ions have been determined at pH 3–4 which show that the exchanger has high affinity for UO 2 2+ , ZrO2+, Cs+ and Tl+ ions. The variation of Kd for a number of metal ions as a function of concentration of nitric acid and ammonium nitrate has been investigated to elucidate the probable exchange mechanism and to work out conditions for elution. Some binary separations, viz. Sr2+−Cs+, Sr2+−Rb+, Sr2+−Y3+, Fe3+−Al3+, Fe3+−Zn2+ and Zn2+−Hg2+ in trace amounts have been carried out on the column of the exchanger which demonstrate the utility of the exchanger in radionalytical and analytical chemistry.  相似文献   

11.
Summary The ion-exchange and sorption characteristics of new polymeric composite resins, prepared by gamma radiation were experimentally studied. The composite resins show high uptake for Co(II) and Eu(III) ions in aqueous solutions in a wide range of pH. The selectivity of the resins for Co(II) or Eu(III) species in presence of some competing ions and complexing agents (as Na+, Fe3+, EDTANa2, etc.) was compared. Various factors that could affect the sorption behavior of metal ions (Co(II) and Eu(III)) on the prepared polymeric composite resins were studied such as ionic strength, contact time, volume mass ratio.  相似文献   

12.
Silica-titania gels containing 25, 50 and 75 mol% TiO2 were prepared and the sorption of alkali and alkaline earth metal ions by these materials has been studied. Distribution coefficient values for Cs+ and Sr2+ ions were found to pass through broad maxima as a function of TiO2 content except in the case of Sr under alkaline conditions where there was a continuous increase. Capacity values also increased with TiO2 content and samples containing 50% (for K+ and Cs+), 75% (for Li+ and Na+) and 25%/50% (for Ca2+, Sr2+ and Ba2+) TiO2 exhibited maximum capacities. However, unlike with alkali metals, capacities of a given sorbent for the three alkaline earth ions were almost the same. Large capacities obtained for the latter ions seem to indicate a mineral-forming reaction with 25% and 50% materials. On the other hand, the 25% TiO2 gel seems to sorb Sr at trace level by an ion exchange mechanism. Coupled with its Cs sorption capability, this material may find potential use in large scale decontamination of low level waste solutions.  相似文献   

13.
The amphoteric acid-base behavior of hydrous zirconium oxide (HZO) was investigated by titrating HZO with 0.05M HNO3 and NaOH at constant ionic strength. The sorption of strontium from 0.05M NaNO3 solution was measured as a function of pH. Abrupt increase in sorption was observed at the equilibrium pH of 9. The experimental titration and strontium sorption data on HZO were evaluated using the constant capacitance model (CCM) and diffuse double layer model (DLM). Various model parameters of Surface Complexation Models (SCM) were estimated, numerically, by non-linear regression. Modeling the sorption and speciation of Sr2+ on HZO indicated that the hydrolysis of Sr2+ to lower charged SrOH+ is the pre-requisite for the abrupt sorption behavior at pH 9.  相似文献   

14.
The isotherm of ion exchange of Ni2+ and Na+ cations on iron-manganese nodules was studied. The ion exchange was described by an equation similar to the Langmuir isotherm. The limiting sorption and the apparent ion-exchange constant were calculated.  相似文献   

15.
A stable chelating resin matrix was prepared by covalently linking resorcinol with polyurethane foam matrix through a –N=N– group. Preconcentration and determination of trace Ag+ and Hg2+ ions from samples of different origin, using Res-PUF, were studied. Various conditions influencing the sorption of these metal ions onto Res-PUF were optimized. The kinetics of sorption of the Ag+ and Hg2+ by Res-PUF were found to be fast, reached equilibrium in few minutes (5–10?min) and followed a first-order rate equation with an overall rate constant k in 0.102 and 0.267/min, respectively. Study of the variation of the sorption of the tested metal ions with temperature yielded average values for ΔG, ΔH and ΔS of ?3.94, ?22.02 and ?58.37, respectively. The mean free sorption energy (E) computed from the Dubinin–Radushkevich (D–R) isotherm was found to be equal to 8.91 kJ/mol, which reflects the chelation sorption process. The capacities of the foam material were 0.15 and 0.07?mmol/g for Ag+ and Hg2+, respectively. Preconcentration factors of?>?50 were achieved (RSD?≈?5.99). The proposed preconcentration procedure was applied successfully to the determination of trace metal ions in natural and wastewater samples.  相似文献   

16.
The behavior of inorganic macrocomponents (Fe3 +, Fe2 +, Cu2 +, and Cl-) and organic additives (judged from the relative concentration of total carbon) in regeneration and reuse of spent etching solutions used in fabrication of copper type-plates was studied. The conditions of electrochemical and sorption stages of the regeneration process were discussed.  相似文献   

17.
The sorption of strontium on synthetic hydroxyapatite was investigated using batch method and radiotracer technique. The hydroxyapatite samples were prepared by a wet precipitation process followed by calcination of calcium phosphate that precipitated from aqueous solution. Also, commercial hydroxyapatites were used. The sorption of strontium on hydroxyapatite depended on the method of preparation and it was pH independent ranging from 4 to 9 as a result of buffering properties of hydroxyapatite. The distribution coefficient K d was significantly decreased with increasing concentration of Sr2+ and Ca2+ ions in solution with concentration above 1 × 10−3 mol dm−3. The percentage strontium sorption for commercial and by wet method prepared hydroxyapatite was in the range of 83–96%, while calcined hydroxyapatite was ranging from 10 to 30%. The experimental data for sorption of strontium have been interpreted in the term of Langmuir isotherm. The sorption of Sr2+ ions was performed by ion-exchange with Ca2+ cations on the crystal surface of hydroxyapatite. Although calcined hydroxyapatite is successfully used as biomaterial for hard tissues repair, it is not used for the treatment of liquid wastes.  相似文献   

18.
The sorption of nickel on synthetic hydroxyapatite was investigated using a batch method and radiotracer technique. The hydroxyapatite samples used in experiments were a commercial hydroxyapatite and hydroxyapatite of high crystallinity with Ca/P ratio of 1.563 and 1.688, respectively, prepared by a wet precipitation process. The sorption of nickel on hydroxyapatite was pH independent ranging from 4.5 to 6.5 as a result of buffering properties of hydroxyapatite. The adsorption of nickel was rapid and the percentage of Ni sorption on both samples of hydroxyapatite was >98 % during the first 15–30 min of the contact time for initial Ni2+ concentration of 1 × 10?4 mol dm?3. The experimental data for sorption of nickel have been interpreted in the term of Langmuir isotherm and the value of maximum sorption capacity of nickel on a commercial hydroxyapatite and hydroxyapatite prepared by wet precipitation process was calculated to be 0.184 and 0.247 mmol g?1, respectively. The sorption of Ni2+ ions was performed by ion-exchange with Ca2+ cations on the crystal surface of hydroxyapatite under experimental conditions. The competition effect of Co2+ and Fe2+ towards Ni2+ sorption was stronger than that of Ca2+ ions. NH4 + ions have no apparent effect on nickel sorption.  相似文献   

19.
Summary The sorption of microquantities of Tm(III) ions on washed polyurethane foam (PUF) from a mixture of aqueous solution and ethanol containing PAN was examined. The maximum sorption of 3.18. 10-6M solution of Tm(III) ions was observed at pH 8 with 30-minute equilibration time. The optimum ratio of aqueous-ethanol phase for the sorption of Tm(III) ions was found to be 3:1 v/v, respectively. The sorption rate of metal ions on PUF is followed a first order kinetics and obeyed the equation for an intra particle diffusion process. The equilibrium concentration data of Tm(III) ions could be described satisfactorily by several adsorption isotherms. The Freundlich adsorption isotherm constants 1/nand KFare 0.66±0.02 and (5.7±0.3). 10-3mol. g-1, respectively. The Langmuir isotherm constants for monolayer coverage (Q) and binding strength of sorption (b) are (2.5±0.7). 10-5mol. g-1and (1.6±0.1). 104l. mol-1, respectively. The sorption capacity derived from Dubinin-Radushkevich (D-R) isotherm is (1.7±0.2). 10-4mol. g-1and the sorption free energy (E) is 9.8±0.2 kJ. mol-1indicating chemisorption phenomena. The thermodynamic parameters indicate that the sorption of Tm(III) ions onto PUF is endothermic, entropy driven and spontaneous in nature.  相似文献   

20.
Poly[aniline(AN)‐co‐5‐sulfo‐2‐anisidine(SA)] nanograins with rough and porous structure demonstrate ultrastrong adsorption and highly efficient recovery of silver ions. The effects of five key factors—AN/SA ratio, AgI concentration, sorption time, ultrasonic treatment, and coexisting ions—on AgI adsorbability were optimized, and AN/SA (50/50) copolymer nanograins were found to exhibit much stronger AgI adsorption than polyaniline and all other reported sorbents. The maximal AgI sorption capacity of up to 2034 mg g?1 (18.86 mmol g?1) is the highest thus far and also much higher than the maximal Hg‐ion sorption capacity (10.28 mmol g?1). Especially at ≤2 mM AgI, the nanosorbents exhibit ≥99.98 % adsorptivity, and thus achieve almost complete AgI sorption. The sorption fits the Langmuir isotherm well and follows pseudo‐second‐order kinetics. Studies by IR, UV/Vis, X‐ray diffraction, polarizing microscopy, centrifugation, thermogravimetry, and conductivity techniques showed that AgI sorption occurs by a redox mechanism mainly involving reduction of AgI to separable silver nanocrystals, chelation between AgI and ? NH? /? N?/? NH2/ ? SO3H/? OCH3, and ion exchange between AgI and H+ on ? SO3?H+. Competitive sorption of AgI with coexisting Hg, Pb, Cu, Fe, Al, K, and Na ions was systematically investigated. In particular, the copolymer nanoparticles bearing many functional groups on their rough and porous surface can be directly used to recover and separate precious silver nanocrystals from practical AgI wastewaters containing Fe, Al, K, and Na ions from Kodak Studio. The nanograins have great application potential in the noble metals industry, resource reuse, wastewater treatment, and functional hybrid nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号