首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Styrene butadiene rubber (SBR) composites with silica, halloysite nanotubes (HNTs) and montmorillonite (MMT) were prepared and the interfacial and mechanical properties were compared to understand the reinforcing behaviours of these fillers based on the results of SEM, DSC, DMA, etc. Due to the formation of interparticle domain, HNTs immobilized more rubber approaching their surface than silica and MMT. Interestingly, only tightly immobilized rubber chains made contribution to the enhancement of interfacial and mechanical strength of SBR composites. This was because the tightly immobilized rubber acted as a bridge in the filler-rubber interface and induced the formation of stretched rubber chains linked filler network when the composites were loaded in tension, while loosely immobilized rubber were easy to slip off from filler surface, causing the separation between filler and bulk rubber. Therefore, silica with more tightly immobilized rubber approaching its surface showed better reinforcing effect on rubber than HNTs and MMT.  相似文献   

2.
Pitch‐based short carbon fibers (CFs) were treated by air oxidation and cryogenic nitrogen, respectively. Thereafter the treated and untreated CFs were incorporated into polyimide (PI) matrix to form composites. The CFs before and after treatment were examined by XPS and SEM.The flexural strength of the specimen was determined in a three‐point test machine and the tribological properties of PI composites sliding against GCr15 steel rings were evaluated on an M‐2000 model ring‐on‐block test rig. The results show that the surface of the treated CFs became rougher. Lots of active groups formed on the CF surface after air oxidation.The treatment can effectively improve the mechanical and tribological properties in their PI composites due to the enhanced fiber‐matrix interfacial bonding. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Stress concentration and weak interfacial strength affect the mechanical properties of short carbon fibers (CFs) reinforced polymer composites. In this work, the cauliflower-like short carbon fibers (CCFs) were prepared and the point was to illuminate the effects of fiber morphology on the mechanical properties of the CCFs/rigid polyurethane (RPU) composites. The results indicated that the surface structure of CCFs could increase the surface roughness of the fibers and the contact area between fibers and matrix, thereby promoting the formation of irregular interface. Compared with pure RPU and initial CFs/RPU composites, the strength and toughness of CCFs/RPU composites were simultaneously improved. The satisfactory performance was attributed to the special fibers structure, which played an anchoring role and consumed more energy during crack propagation.  相似文献   

4.
The objective of this work is to improve the interlaminar shear strength and tribological properties of the PA 6 composites by graphene oxide‐treated carbon fiber (CF) and ultraviolet irradiation of PA 6. The morphologies of untreated and treated CFs were characterized by X‐ray photoelectron spectroscopy. Surface analysis showed that after treatment, the surface of CFs chemisorbed oxygen‐containing groups; active carbon atom, the surface roughness, and wetting ability were increased. The results show that the treated CF composites can possess excellent interfacial properties and tribological properties accordingly after treatment. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
In this article, short carbon fibers (CFs) reinforced rigid polyurethane (RPU) composites were prepared with the aim of improving both strength and toughness. A tannic acid (TA)‐nickel (Ni) composite coating was spontaneously co‐deposited onto CFs surface by a one‐step electrodeposition method to strengthen the interface bonding of the composites. The satisfactory mechanical properties of the composites were mainly attributed to the superior interfacial adhesion. On the one hand, TA could play a role in refining Ni grain during electrodeposition. On the other hand, the hydroxyl groups attached to composite coating, which were introduced by TA, could react with the RPU matrix to form chemical bonds. When the composites were under stress, the chemical bonds could effectively transfer the stress from matrix to the interface, while the refined Ni crystals could greatly increase the stress transfer path, and thus improve the strength and toughness of the material. Compared with pure RPU, the tensile strength, bending strength,interlaminar shear strength, and impact strength of TA‐Ni‐coated CFs/RPU composites were improved by 14.8%, 83.1%, 28.7%, and 121.4%, respectively.  相似文献   

6.
The poor interfacial adhesion between carbon fibers (CFs) and polyimide (PI) resin has seriously hampered the application of CF/PI composites. In this work, the interfacial adhesion was efficiently enhanced by grafting on the CF surface. Surface morphology and surface composition of modified carbon fibers were characterized, which indicated that acrylamide was grafted successfully on the CF surface and the surface roughness was increased slightly. After grafting, the interface shear strength of modified carbon fibers/PI composites was significantly improved by 86.96%, and the interlaminar shear strength was enhanced by 55.61% due to the covalent bonds in interphase and the toughening effect of sizing agent. Moreover, the mechanical properties of composites with different interfacial adhesion were measured, which further confirmed the effect of the grafting modification.  相似文献   

7.
The simultaneous promotion in mechanical and electrical properties of rigid polyurethane (RPU) is an important task for expanding potential application. In this work, carbon fibers (CFs) reinforced RPU composites were prepared with the goal of improving mechanical and electrical properties. Metallized CFs meet our performance requirements and can be easily achieved via electrodeposition. However, the weak bonding strength in fiber‐metal‐RPU interface restricts their application. Inspired by the reducibility and wonderful adhesion of dopamine (DA), we proposed a new and efficient electrochemical method to fabricate metallized CFs, where DA polymerization was simultaneously integrated coupled with the reduction of metal ions (Ni2+). The characterization results helped us to gain insight about the reaction mechanism, which was never reported as far as we know. Compared with pure RPU, the tensile, interlaminar shear and impact strength of polydopamine (PDA)‐nickel (Ni) modified CFs/RPU composites were improved by 11.2%, 21.0%, and 78.0%, respectively, which attributed to the strong interfacial adhesion, including mechanical interlocking and chemical crosslinking between treated CFs and RPU. In addition, the PDA‐Ni surface treatment method also affected the dispersion of short CFs in the RPU, which increased the possibility of conductor contact and reduced insulator between fibers networks, resulting in higher electrical conductivity.  相似文献   

8.
Linear low density polyethylene (LLDPE) is the one of the most popular polymer used for rotational moulding applications such as storage tanks. But, its inferior mechanical properties and thermal stability restrict the longer service. Hence, this study experimentally demonstrates the effect of Halloysite Nanotube (HNTs) concentration on LLDPE composites for enhancing the mechanical and thermal stability. HNTs were uniformly dispersed with LLDPE matrix through ultra-sonication, followed by compression moulding used to prepare the nano composites plates. The prepared composites are shown 19.2% improved tensile strength for 2 wt% HNTs, whereas 28.9% hike in flexural strength observed for 4 wt% HNTs composite, compare to neat LLDPE. Which shows that higher concentrations of HNTs is favourable in improving the flexural strength rather than tensile properties. In addition to that, higher concentrations of HNTs are also helping in improving the storage modulus of the LLDPE composites. The increase in mechanical properties mainly attributed due to effective load carriers (HNTs) in the composite. Besides, HNTs were also contributing for improving the melting point and residual char of the composites, which is indeed for storage tanks durability. The prepared composite was thermally stable at higher temperature up to 230 °C, because of HNTs chemical structure, the inner layer of HNTs constitute with Al2O3 and outermost layer constitute with SiO2, both are thermally stable. Stated enhancement proves the potential effect of HNTs reinforcement in the LLDPE composite for rotational moulding applications.  相似文献   

9.
In order to enhance the interfacial adhesion of carbon fiber(CF) and polymer matrix, a multiscale gradient modulus intermediate layer with rigid-flexible(GO-PA) hierarchical structure was designed and fabricated between CFs and matrix by a facile and businesslike strategy. The polarity, roughness and wettability of CFs surface as well as the thickness of intermediate layer in composite have been significantly increased after rigid-flexible hierarchical structure was constructed. The IFSS, ILSS, compression and impact toughness manifested that the hierarchical structure could bring about a fantastic improvement(76.8%, 46.4%, 40.7% and 37.8%) for the interfacial and mechanical properties than other previous reports. Consequently, the establishment of CF surface with gradient modulus rigid-flexible hierarchical structure via regulation of nanoparticles and polymer array would open a new, viable and promising route to obtaining high-performance composites.  相似文献   

10.
In this study, the reinforcing mechanism of amine functionalized on carbon fibers (CFs) has been precisely discussed, and the differences between aliphatic and aromatic compounds have been illustrated. Polyacrylonitrile‐based CFs were functionalized with ethylenediamine, 4,4‐diaminodiphenyl sulphone, and p‐aminobenzoic acid (PAB), and CF‐reinforced epoxy composites were prepared. The structural and surface characteristics of the functionalized CFs were investigated using X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT‐IR), and scanning electron microscopy (SEM). Mechanical properties in terms of tensile and flexural strengths and moduli were studied. The FT‐IR results confirm the success in bonding amines on the CF surface. After treatment of CFs, the oxygen and nitrogen contents as well as the N/C ratio showed an increase. XPS results provided evidence of the chemical reaction during functionalization, rather than being physically coated on the CF surface. Chemical modification of CF with diamines led to considerable enhancement in compatibility of CF filaments and epoxy resin, and remarkable improvements were seen in both tensile and flexural properties of the reinforced composites. SEM micrographs also confirmed the improvement of interface adhesion between the modified CFs and epoxy matrix. Finally, it can be concluded that PAB is a promising candidate to functionalize CF in order to improve interfacial properties of CF/epoxy composites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
 A natural nanotubular material, halloysite nanotubes (HNTs), was introduced to prepare styrene-butadiene rubber/modified halloysite nanotube (SBR/m-HNT) nanocomposites. Complex of resorcinol and hexamethylenetetramine (RH) was used as the interfacial modifier. The structure, morphology and mechanical properties of SBR/m-HNT nanocomposites, especially the interfacial interactions, were investigated. SEM and TEM observations showed that RH can not only facilitate the dispersion and orientation of HNTs in SBR matrix at nanometer scale, but also enhance the interfacial combination between HNTs and rubber matrix. FTIR and XPS investigations confirmed that a number of hydrogen bonds were formed between the phenol hydroxyl groups in resorcinol-formaldehyde resin derived from RH and the oxygen atoms in Si―O bonds or hydroxyl groups on HNTs surfaces. The m-HNTs modified with RH have significant reinforcing effect on SBR vulcanizates. RH as a good interfacial modifier can remarkably improve mechanical properties of SBR/HNT composites. The substantial improvement of comprehensive properties for SBR/m-HNT nanocomposites can be attributed to good dispersion and orientation of HNTs in SBR matrix at nanometer scale and the enhanced interfacial interaction between HNTs and rubber matrix.  相似文献   

12.
In this paper, a new type of epoxy based composites, which is modified by multiscale reinforcements, for Direct Extrusion Fabrication (DEF) is developed. In the composites, micron-sized fillers-Carbon Fibers (CFs) were treated by ball milling and liquid-phase-oxidation/sonication methods in order to enhance the surface roughness and improve the interfacial interactions. In this way, both the tensile strength and Young’s modulus were increased. A modified Halpin-Tsai model was presented to predict the Young’s modulus of multiscale reinforced composites with both micron-sized and nano-sized reinforcements. However, the improvement of toughness was limited. In order to increase the toughness without sacrificing other properties, nano-sized fillers—rubber nano-particles (RNPs) and carbon nano-tubes (CNTs) were added. Mechanical experiments and scanning electron microscopy (SEM) observations were used to study the effects of the micron-sized, nano-sized reinforcements and their combination on tensile and toughness properties of the composites. The results showed that the combined use of multiscale reinforcements had synergetic effects on both the strength and the toughness of the composites.  相似文献   

13.
采用熔融共混法制备了聚环氧乙烷(PEO)/埃洛石纳米管(HNTs)复合材料,重点研究了HNTs含量对PEO/HNTs复合材料的微观结构、热稳定性及燃烧性质的影响。结果表明,在熔融共混条件下,不同含量的表面未经任何处理的HNTs以纳米尺度均匀分散于PEO基体中;随着HNTs含量的增加,复合材料的热稳定性显著增加。氧指数和水平燃烧测试结果均表明随着HNTs含量的增加,复合材料的阻燃能力有较大提高。  相似文献   

14.
The present work comparatively studied the modification effects of short carbon fiber (CF) on the mechanical properties and fretting wear behavior of ultra‐high molecular weight polyethylene (UHMWPE)/CF composites. The interactions between CFs and UHMWPE interface were also investigated in detail. The results showed that, with the increase in fiber content, the compressive modulus and hardness of the composites increased, while its impact strength decreased. It was found that filling of CF can reduce the friction and wear of UHMWPE. In addition, the UHMWPE‐based composites reinforced with nitric acid‐treated CF exhibited better mechanical properties, lower friction coefficient, and higher wear resistance than those of untreated UHMWPE/CF composites. This was attributed to the improvement of interfacial adhesion and compatibility between CF and UHMWPE matrix caused by surface chemical modification of CF. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Carbon nanotubes (CNTs) show exceptional properties that render them attractive for incorporation in a new generation of high‐performance engineering composites with tailored properties. While a great deal of work has been done toward using CNTs as a reinforcing agent in polymer composites, the full potential of CNTs has yet to be reached. In this work, two case studies were proposed in order to analyze the effectiveness of CNTs and carbon fibers (CFs) as reinforcing agents. Micromechanics models for the stiffness and strength of hybrid composites, comprising CNTs and CFs are derived by considering the concept of effective fiber. In addition, the 2009 prices of commercially available CNTs are reviewed. The strongest, the stiffest, and the cheapest CFs commercially available are compared with single walled CNTs (SWCNTs) and multiwalled CNTs (MWCNTs). The simulated results from the micromechanics models show that the use of CFs makes the acquisition of composites with maximum tensile strengths of 4.18 GPa possible. Analysis of the cost versus property relation showed that CNTs are the most viable strengthening option for achieving composites with strengths of up to 11.61 GPa. It is also shown that CFs are the most viable stiffening option, making composites with Young's moduli of up to 383 GPa possible at the expense of the material's toughness. Moreover, it is shown that, in order to achieve CNT's true potential, several challenges have to be faced. CNTs have to be produced with higher purity, longer lengths, better integrity, in larger amounts, and at lower cost. Moreover, issues such as orientation of the CNTs, their concentration, interfacial adhesion, distribution, and dispersion have to be overcome.

  相似文献   


16.
In this paper, novel poly(phthalazione ether sulfone ketone) (PPESK) and its composites reinforced with carbon fibers (CFs) were prepared, and their tribological behaviors in pure and sea water were comparatively investigated. Affected by the noncoplanar twisted aromatic structure in the molecular skeleton, the aggregation of the macromolecular chain in PPESK was amorphous, resulting in very high water absorption of PPESK matrix. The invading water molecules led to a sharp decrease in the hardness of PPESK surface, resulting in very high wear rate of PPESK in water. Although CF/PPESK composites had higher water absorption than pure PPESK, their wear processes in water were no longer dominated by high water absorption but by the load‐carrying effect of CFs, ascribed to the good CF/PPESK interfacial adhesion. Therefore, CF/PPESK composites exhibited very low wear rates in the order of 10?7 mm3/Nm in water, which decreased with the CF content increasing until the content of CFs reached 50%. The results revealed that the most critical factor determining the wear behavior of a fiber‐reinforced polymer composite sliding in water is the fiber/matrix interface but not the water absorption of the polymer matrix. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
The effects of surface treatment of a carbon fiber (CF) by supersonic atmosphere plasma spraying (SAPS) on the interfacial adhesion behavior and morphology of polypropylene/polystyrene (PP/PS) matrix blends filled CF composites were investigated. Effects of surface treated a commercial CF on mechanical properties are studied. Contact angle was measured to examine the changes in wettability of the CF. The chemical and morphological changes were characterized by using X‐ray photoelectron spectroscopy and scanning electron microscopy. PP/PS/CF composites were fabricated with and without SAPS treatment, and their interlaminar fracture toughnesses were compared. The results showed that the interlaminar shear strength of composites has been greatly improved filled SAPS modification CF. The water contact angle of resin sample decreased 50% after addition of SAPS surface‐treated CF. Scanning electron microscopy results on the fractured surface exhibited PP/PS blends adhered well around the CFs of the SAPS‐treated specimen compared with that of the untreated specimen. This attributed to the CF interlock, and it improves the wetting between fibers and resins. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, polyamide 12 (PA12)/untreated halloysite nanotubes (HNTs) nanocomposites are prepared in a semi‐industrial scale extruder using a non‐traditional “one step” water‐assisted extrusion process. A morphological study is carried out using a combination of scanning electron microscopy and transmission electron microscopy analyses to evaluate the influence of water injection and filler content on the quality of clay dispersion. The use of water injection slightly improves the nanoscale dispersion at low HNTs content (<8 wt.%), while this effect is more pronounced at higher filler loading (16 wt.%). A mechanism explaining the physico‐chemical action of water during extrusion is proposed. The materials are characterized with respect to their mechanical, thermo‐mechanical, thermal and fire properties. A strong correlation is found between nanostructure and physical properties; the more uniform dispersion of the clay nanotubes, the higher mechanical reinforcement, thermal stability and fire retardancy of PA12 nanocomposites. Tensile tests results are interpreted in terms of three mechanical models: the Halpin–Tsai's model for stiffness and the interfacial strength model and the Pukanszky's equation for yield strength. Linear fits of the experimental data confirm that the superior reinforcement of nanocomposites prepared using water injection results from improved clay dispersion and better interfacial adhesion between PA12 and HNTs. In view of these promising results, the proposed direct melt compounding method could be easily scaled‐up towards the production of PA12–HNTs nanocomposites at an industrial scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Poly(lactic acid)/halloysite nanotubes (PLA/HNTs) nanocomposites were prepared using melt compounding followed by compression molding. N,N′-ethylenebis(stearamide) (EBS) was used to improve the dispersion of HNTs and toughen the PLA nanocomposites. The thermal properties of PLA/HNTs nanocomposites were assessed by using differential scanning calorimeter and thermogravimetric analyzer (TG). The TG measurements were performed at both nitrogen and oxygen atmosphere. The mechanical properties of PLA/HNTs were characterized through tensile and impact tests. The morphological properties of the PLA/HNTs nanocomposites were investigated by using transmission electron microscopy and field emission scanning electron microscopy. The degree of crystallinity of PLA nanocomposites was increased slightly by the addition of EBS. The decomposition process of PLA/HNTs depends on the atmosphere reaction during TG test as well as the amount of EBS. The best mechanical properties of PLA/HNTs nanocomposites expressed by the impact strength and elongation at break were achieved by the addition of 5 mass% of EBS.  相似文献   

20.
In the present work, a new technique was developed to determine the interfacial properties of two opaque glass fibre/polypropylene (GF/PP) systems via fragmentation tests on single filament model composites. Fragmentation tests usually require the fibre inside the composites to be completely aligned in the loading direction. Since PP matrices are non-transparent, it is not possible to guarantee a priori this condition. Hence, a novel technique was developed to determine the inclination of the filaments embedded in the composites. The fibre–polymer systems were also evaluated by comparing their interfacial properties with the overall mechanical properties determined on pultruded GF/PP composites. The present work shows that the knowledge of the interfacial properties is important, not only to compare alternative fibre/matrix systems, but also to assess whether the level of adhesion in these systems is adequate to fabricate composites with good mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号