首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymer‐grafted multiwalled carbon nanotube (MWCNT) hybrid composite which possess a hard backbone of MWCNT and a soft shell of brush‐like polystyrene (PSt) were synthesized. The reversible addition fragmentation chain transfer (RAFT) agents were successfully immobilized onto the surface of MWCNT first, and PSt chains were subsequently grafted from sidewall of MWCNT via RAFT polymerization. Chemical structure of resulting product and the quantities of grafted polymer were determined by Fourier transform infrared, thermal gravimetric analysis, nuclear magnetic resonance, and X‐ray photoelectron spectra. Transmission electron microscopy and field emission scanning electron microscopy images clearly indicate that the nanotubes were coated with a polymer layer. Furthermore, the functionalized MWCNT as additives was added to base lubricant and the tribological property of resultant MWCNT lubricant was investigated with four‐ball machines. The results indicate that the functionalization led to an improvement in the dispersion of MWCNT and as additives it amended the tribological property of base lubricant. The mechanism of the significant improvements on the tribological properties of the functionalized MWCNT as additives was discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3014–3023, 2008  相似文献   

2.
Preparation and characterization of poly(N‐isopropylacrylamide) (PNIPAM) polymer brushes on the surfaces of reduced graphene oxide (RGO) sheets based on click chemistry and reversible addition‐fragmentation chain transfer (RAFT) polymerization was reported. RGO sheets prepared by thermal reduction were modified by diazonium salt of propargyl p‐aminobenzoate, and alkyne‐functionalized RGO sheets were obtained. RAFT chain transfer agent (CTA) was grafted to the surfaces of RGO sheets by click reaction. PNIPAM on RGO sheets was prepared by RAFT polymerization. Fourier transform‐infrared spectroscopy, thermogravimetric analysis, X‐ray photoelectron spectroscopy, and transmission electron microscopy (TEM) results all demonstrated that RAFT CTA and PNIPAM were successfully produced on the surfaces of RGO sheets. Nanosized PNIPAM domains on RGO sheets were observed on TEM. Micro‐DSC result indicated that in aqueous solution PNIPAM on RGO sheets presented a lower critical solution temperature at 33.2 °C. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
Two phase separating block copolymers equipped with functional groups (acid and alkyne) were synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization. Thin films of these materials were prepared and examined with regard to surface morphology, surface composition, and film stability. Self‐assembled structures with domain sizes of about 40 nm were detected through atomik force microscopy (AFM) analysis while X‐ray photoelectron spectroscopy measurements revealed a balanced surface exposure of the two segregated phases. Thus, reactive groups being present in both phases are specifically provided within nanoscopic surface areas. The films showed good stability on exposure to various solvents but the self‐organized surface patterns were only resistant toward ethanol. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
One‐step synthesis of block‐graft copolymers by reversible addition‐fragmentation chain transfer (RAFT) and ring‐opening polymerization (ROP) by using a novel initiator was reported. Block‐graft copolymers were synthesized in one‐step by simultaneous RAFT polymerization of n‐butylmethacrylate (nBMA) and ROP of ε‐caprolacton (CL) in the presence of a novel macroinitiator (RAFT‐ROP agent). For this purpose, first epichlorohydrin (EPCH) was polymerized by using H2SO4 via cationic ring‐opening mechanism. And then a novel RAFT‐ROP agent was synthesized by the reaction of potassium ethyl xanthogenate and polyepichlorohydrin (poly‐EPCH). By using the RAFT‐ROP agent, poly[CL‐b‐EPCH‐b‐CL‐(g‐nBMA)] block‐graft copolymers were synthesized. The principal parameters such as monomer concentration, initiator concentration, and polymerization time that affect the one‐step polymerization reaction were evaluated. The block lengths of the block‐graft copolymers were calculated by using 1H‐nuclear magnetic resonance (1H NMR) spectrum. The block length could be adjusted by varying the monomer and initiator concentrations. The characterization of the products was achieved using 1H NMR, Fourier‐transform infrared spectroscopy, gel‐permeation chromatography, thermogravimetric analysis, differential scanning calorimetry, elemental analysis, and fractional precipitation (γ) techniques. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2651–2659  相似文献   

5.
Block copolymer comprising of polyisobutylene (PIB) soft segment and poly(3‐(3,5,7,9,11,13,15‐heptaisobutyl‐pentacyclo[9.5.1.13,9.15,15.17,13]‐octasiloxane‐1‐yl)propyl methacrylate) (PMAPOSS) hard segment was synthesized by combination of living carbocationic and reversible addition‐fragmentation chain transfer (RAFT) polymerizations. Block copolymers were characterized by 1H and 29Si NMR spectroscopy, FT‐IR study, energy dispersive X‐ray spectroscopy (EDX), and gel permeation chromatography (GPC). The EDX, combined with scanning electron microscopy (SEM) was employed for determination of elemental composition. Thermal transition and degradation behaviors were confirmed by differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA), respectively. Although both the PIB and MAPOSS homopolymers are amorphous in nature, in their block copolymers the PMAPOSS domain showed crystalline behavior, as confirmed from wide‐angle X‐ray scattering (WAXS) technique, DSC studies and polarized optical microscopy (POM). Interestingly, crystalline melting temperatures (Tm) can be tuned by changing the PIB to PMAPOSS block length ratios. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1125–1133  相似文献   

6.
The silica–polyvinyl imidazole core–shell nanoparticles (silica/PVI NPs) with controlled shell thickness and narrow distribution size were fabricated via “grafting‐to” method. First, O‐ethyl xanthate terminated PVI with various chain lengths was produced via the reversible addition–fragmentation chain transfer (RAFT) polymerization using O‐ethyl‐S‐phenyl dithiocarbonate (EPDC) as RAFT agent. Next, three synthesized PVI of different molecular weights (3.4, 6.6, and 11 kg/mol) were successfully grafted to the methacrylate modified silica NPs from solution by radical mediated grafting‐to method. These core–shell NPs were then characterized by Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectrum measurements (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Polyvinyl imidazole molecular weight, reaction time, polymer concentration, and reaction temperature were all used to control the grafting reaction for PVI grafting densities and shell thicknesses. The highest grafting density obtained was close to 1.2 chains/nm2 and was achieved for 3.4 kg/mol PVI at 80°C. The prepared silica/PVINP displayed efficient antifouling properties and stability in concentrated sodium chloride aqueous solutions over a broad pH range for a period of at least 7 days. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, synthesis of poly(epichlorohydrin-g-methyl methacrylate) graft copolymers by reversible addition-fragmentation chain transfer (RAFT) polymerization was reported. For this purpose, epichlorohydrin was polymerized by using HNO3 via cationic ring-opening mechanism. A RAFT macroinitiator (macro-RAFT agent) was obtained by the reaction of potassium ethyl xanthogenate and polyepichlorohydrin. The graft copolymers were synthesized using macro-RAFT agent as initiator and methyl methacrylate as monomer. The synthesis of graft copolymers was conducted by changing the time of polymerization and the amount of monomer-initiator concentration that affect the RAFT polymerization. The effects of these parameters on polymerization were evaluated via various analyses. The characterization of the products was determined using 1H-nuclear magnetic resonance (1H-NMR), Fourier-transform infrared spectroscopy, gel-permeation chromatography, thermogravimetric analysis, elemental analysis, and fractional precipitation techniques. The block lengths of the graft copolymers were calculated by using 1H-NMR spectrum. It was observed that the block length could be altered by varying the monomer and initiator concentrations.  相似文献   

8.
Agar microspheres were prepared by water–oil emulsification and cross‐linked under alkaline condition. The thermoresponsive hydrophobic copolymer, poly(N‐isopropylacrylamide‐co‐lauryl methacrylate‐co‐acrylamide), was grafted on the agar microspheres via atom transfer radical polymerization. The agar microspheres grafted with copolymers were characterized by light microphotography, elemental analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, and X‐ray photoelectron spectroscopy. The chain lengths and hydrophobic monomer ratio of the grafting linear polymer had significant effects on the hydrophobicity and adsorption capacity of agar microspheres at different temperatures. The thermoresponsive microspheres were used for separation of proteins and showed binding and release behavior by change of temperatures without change in mobile phase composition. Thus, we suggest thermoresponsive agar microspheres as an alternative separation media for all‐aqueous bioseparations.  相似文献   

9.
Thermo- and pH-responsive polypropylene microporous membrane prepared by photoinduced reversible addition–fragmentation chain transfer (RAFT) graft copolymerization of acrylic acid and N-isopropyl acrylamide by using dibenzyltrithiocarbonate as a RAFT agent. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR), X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FE-SEM) were used to characterize the structural and morphological changes on the membrane surface. Results of ATR/FT-IR and XPS clearly indicated that poly(acrylic acid) (PAAc) and poly(N-isopropyl acrylamide) (PNIPAAm) were successfully grafted onto the membrane surface. The grafting chain length of PAAc on the membrane surface increased with the increase of UV irradiation time, and decreased with the increase of the concentration of chain transfer agent. The PAAc grafted membranes containing macro-chain transfer agents, or the living membrane surfaces were further functionalized via surface-initiated block copolymerization with N-isopropyl acrylamide in the presence of free radical initiator, 2,2′-azobisisobutyronitrile. It was found that PNIPAAm can be grafted onto the PAAc grafted membrane surface. The results demonstrated that polymerization of AAc and NIPAAm by the RAFT method could be accomplished under UV irradiation and the process possessing the living character. The PPMMs with PAAc and PNIPAAm grafting chains exhibited both pH- and temperature-dependent permeability to aqueous media.  相似文献   

10.
The synthesis of poly[(oligoethylene glycol) methyl ether acrylate] [poly(OEGA)] brushes was achieved via reversible addition‐fragmentation chain transfer (RAFT) polymerization and used to selectively immobilize streptavidin proteins. Initially, gold surfaces were modified with a trithiocarbonate‐based RAFT chain transfer agent (CTA) by using an ester reaction involving a gold substrate modified with 11‐mercapto‐1‐undecanol and bis(2‐butyric acid)trithiocarbonate. poly(OEGA) brushes were then prepared via RAFT‐mediated polymerization from the surface‐immobilized CTA. The immobilization of CTA on the gold surface and the subsequent polymer formation were followed by ellipsometry, X‐ray photoelectron spectroscopy, grazing angle‐Fourier transform infrared spectroscopy, atomic force microscopy, and water contact‐angle measurements. RAFT‐mediated polymerization method gave CTA groups to grafted poly(OEGA) termini, which can be converted to various biofunctional groups. The terminal carboxylic acid groups of poly(OEGA) chains were functionalized with amine‐functionalized biotin units to provide selective attachment points for streptavidin proteins. Fluorescence microscopy measurements confirmed the successful immobilization of streptavidin molecules on the polymer brushes. It is demonstrated that this fabrication method may be successfully applied for specific protein recognition and immobilization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
Three new ureidopyrimidinone(UPy)‐functionalized chain‐transfer agents (CTAs) have been synthesized for use in reversible addition‐fragmentation chain transfer (RAFT) polymerization. These UPy‐CTAs are able to polymerize a wide variety of vinyl monomers to yield UPy‐functionalized polymers, including homopolymers, block copolymers, and amphiphilic block copolymers. These polymers have been characterized via 1H and 13C NMR spectroscopy, gel permeation chromatography (GPC), UV/visible spectroscopy and differential scanning calorimetry (DSC) to demonstrate end‐group fidelity. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

12.
AB diblock copolymers of poly(2-(dimethylamino)ethyl metharylate-block-potassiurn acrylate) were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. The structure of the block polymer was determined by the nuclear magnetic resonance (NMR) spectroscopy and the gel permeation chromatography. Moreover, it has also been shown that the diblock copolymers exhibit aggregate as function of the pH according to the result of 1H-NMR spectroscopy, FT-IR absorption spectra, UV-vis transmittance spectroscopy, transmission electron microscopy and ultrasonic particle size analyzer. The result was attributed that such AB diblock copolymers were tailored to undergo pH-induced self-assembly. Furthermore, the aggregate can be as template of metal nanoparticles preparation, and the sizes of the aggregate, in turn, strongly control nanoparticle sizes.  相似文献   

13.
This review summarizes recent advances in the design and synthesis of amino‐acid‐based block copolymers by reversible addition–fragmentation chain transfer (RAFT) polymerization of amino‐acid‐bearing monomers. We will mainly focus on stimuli‐responsive block copolymers, such as pH‐, thermo‐, and dual‐stimuli‐responsive block copolymers, and self‐assembled block copolymers, including amphiphilic and double‐hydrophilic block copolymers having tunable chiroptical properties. We will also highlight recent results in RAFT synthesis of amino‐acid‐based copolymers having various properties, such as catalytic and optoelectronic properties, cross‐linked block copolymer micelles, unimolecular micelles, and organic–inorganic hybrids.  相似文献   

14.
Graft copolymers were prepared using the RAFT process via a Z-group approach, where xanthate esters were formed directly on a cellulosic substrate. Grafting of vinyl acetate onto the modified cellulosic materials was then carried out via the reversible addition fragmentation chain transfer (RAFT) process. The xanthate RAFT agents on the backbone of the cellulosic materials were identified by Fourier-transform infrared spectroscopy (FT-IR) and ultraviolet-visible spectroscopy (UV-vis). The number average molar masses of the graft copolymers were determined using size exclusion chromatography (SEC) and further characterization was conducted via liquid adsorption chromatography (LAC). The chromatographic results showed that the modified cellulosic materials were successfully grafted with polyvinyl acetate in a controlled manner. Grafted polyvinyl acetate (on the surface) and nongrafted polyvinyl acetate (in the solution) have almost the same molar mass and polydispersity index.  相似文献   

15.
Two different initiator/transfer agents (inifers) containing an alkoxyamine and a dithiobenzoate were synthetized and used to trigger out either reversible addition‐fragmentation chain transfer (RAFT) polymerization or nitroxide‐mediated polymerization (NMP). α‐Dithiobenzoate‐ω‐alkoxyamine‐difunctional polymers were produced in both cases which were subsequently used as precursors in the formation of block copolymers. This synthetic approach was applied to N‐isopropylacrylamide (NIPAM) or polyethylene oxide methacrylate (EOMA) to form α,ω‐heterodifunctional homopolymers via RAFT at 60°C which were chain extended with styrene by activating the alkoxyamine moiety at 120°C. Under such temperature conditions, it is proposed that a tandem NMP/RAFT polymerization is initiated producing a simultaneous growth of polystyrene blocks at both chain‐ends. Self‐assembled nanostructures of these amphiphilic block copolymers were evidenced by scanning electron microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
pH‐ and temperature‐responsive poly(N‐isopropylacrylamide‐block?4‐vinylbenzoic acid) (poly(NIPAAm‐b‐VBA)) diblock copolymer brushes on silicon wafers have been successfully prepared by combining click reaction, single‐electron transfer‐living radical polymerization (SET‐LRP), and reversible addition‐fragmentation chain‐transfer (RAFT) polymerization. Azide‐terminated poly(NIPAAm) brushes were obtained by SET‐LRP followed by reaction with sodium azide. A click reaction was utilized to exchange the azide end group of a poly(NIPAAm) brushes to form a surface‐immobilized macro‐RAFT agent, which was successfully chain extended via RAFT polymerization to produce poly(NIPAAm‐b‐VBA) brushes. The addition of sacrificial initiator and/or chain‐transfer agent permitted the formation of well‐defined diblock copolymer brushes and free polymer chains in solution. The free polymer chains were isolated and used to estimate the molecular weights and polydispersity index of chains attached to the surface. Ellipsometry, contact angle measurements, grazing angle‐Fourier transform infrared spectroscopy, and X‐ray photoelectron spectroscopy were used to characterize the immobilization of initiator on the silicon wafer, poly(NIPAAm) brush formation via SET‐LRP, click reaction, and poly(NIPAAm‐b‐VBA) brush formation via RAFT polymerization. The poly(NIPAAm‐b‐VBA) brushes demonstrate stimuli‐responsive behavior with respect to pH and temperature. The swollen brush thickness of poly(NIPAAm‐b‐VBA) brush increases with increasing pH, and decreases with increasing temperature. These results can provide guidance for the design of smart materials based on copolymer brushes. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2677–2685  相似文献   

17.
A novel approach for the fabrication of magneto‐active carbon nanotubes (CNTs) stabilized in aqueous media, involving the combination of carboxylated single‐wall carbon nanotubes (SWCNTs) with a new class of methacrylate‐based chelating diblock copolymers, is described. More precisely, a well‐defined diblock copolymer consisting of hexa(ethylene glycol) methyl ether methacrylate (hydrophilic and thermo‐responsive) and 2‐(acetoacetoxy)ethyl methacrylate (hydrophobic and metal‐chelating) synthesized by reversible addition‐fragmentation chain transfer polymerization has been used to prepare polymer‐coated magneto‐active SWCNTs decorated with iron oxide nanoparticles. Further to the characterization of the compositional and thermal properties using transmission electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction spectroscopy and thermal gravimetric analysis, assessment of the magnetic characteristics by vibrational sample magnetometry disclosed superparamagnetic behavior at room temperature. The latter, combined with the thermo‐responsive properties of the polymeric coating and the unique, inherent properties of the carbon nanotubes may allow for their future exploitation in the biomedical field. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1389–1396, 2011  相似文献   

18.
Dipeptide diphenylalanine has attracted significant research interests because of its ability to self‐assemble into various nanostructures such as nanotubes, nanowires, and nanoribbons. In this article, we present the synthesis and self‐assembly of a novel diphenylalanine‐based homopolymer and block/random copolymers by the reversible addition–fragmentation chain transfer (RAFT) polymerization of an acrylamide having a dipeptide moiety. The RAFT polymerization of N‐acryloyl‐l ,l ‐diphenylalanine (A‐Phe‐Phe‐OH) afforded novel amino acid‐based polymers with predetermined molecular weights and relatively narrow‐molecular weight distributions. The hierarchical self‐assembled structures of poly(A‐Phe‐Phe‐OH), which involve nanorods, larger nanofiber‐like microcrystals, and fiber bundles, were characterized by atomic force microscopy (AFM), transmission electron microscopy, scanning electron microscopy, and dynamic light scattering measurements. The circular dichroic measurements of poly(A‐Phe‐Phe‐OH) revealed its characteristic chiroptical property, which is affected by the nature of the solvents and the addition of urea and salts via hydrophobic, hydrogen bonding, and electrostatic interactions. Thermo‐ and pH‐responsive block and random copolymers composed of A‐Phe‐Phe‐OH and N‐isopropylacrylamide were synthesized by RAFT polymerization, and the thermoresponsive properties and assembled structures of the resulting copolymers were investigated by AFM and turbidity measurements. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2562–2574  相似文献   

19.
Summary: Surface functionalization of Fe3O4 magnetic nanoparticles (MNP) via living radical graft polymerization with styrene and acrylic acid (AAc) in the reversible addition‐fragmentation chain transfer (RAFT)‐mediated process was reported. Peroxides and hydroperoxides generated on the surface of Fe3O4 nanoparticles via ozone pretreatment facilitated the thermally initiated graft polymerization in the RAFT‐mediated process. A comparison of the MNP before and after the RAFT‐mediated process was carried out using transmission electron microscopy (TEM) analysis, Fourier transform infrared (FTIR), and X‐ray photoelectron spectroscopy (XPS). Gel permeation chromatography (GPC) was used to determine the molecular weight of the free homopolymer in the reaction mixture. Well‐defined polymer chains were grown from the MNP surfaces to yield particles with a Fe3O4 core and a polymer outer layer. The resulting core–shell Fe3O4g‐polystyrene and Fe3O4g‐poly(acrylic acid) (PAAc) nanoparticles formed stable dispersions in the organic solvents for polystyrene (PS) and PAAc, respectively.

Schematic illustration of thermally induced graft polymerization of styrene and AAc with the ozone‐treated Fe3O4 MNP.  相似文献   


20.
A dual stimuli‐responsive (pH and thermo) polyethylene terephthalate (PET) track‐etched membrane has been prepared using atom transfer radical polymerization (ATRP). First, ATRP initiator 2‐bromoisobutyryl bromide was anchored onto the membrane surface. Then, 2‐hydroxyethyl‐methacrylate (HEMA) and N‐isopropylacrylamide (NIPAAm) were grafted onto the membrane surface using ATRP. X‐ray photoelectron spectroscopy, ATR‐Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analysis were used to characterize the membrane structure and thermal properties; water flux measurement was used to investigate the double stimuli‐responsive property of the obtained membrane. The results indicate that the PHEMA and PNIPAAm binary grafted PET track‐etched membrane has double environmental responsiveness. This method provides a potential modification method for preparing functional membranes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号