首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel modified cyanate ester (CE) resins with decreased dielectric loss, improved thermal stability, and flame retardancy were developed by copolymerizing CE with hyperbranched phenyl polysiloxane (HBPPSi). HBPPSi was synthesized through the hydrolysis of phenyltrimethoxysilane, and its structure was characterized by 1H‐NMR, 29Si‐NMR, and Fourier transform infrared spectra. The effect of the incorporation of HBPPSi into CE resin on the curing behavior, chemical structure of cured networks, and typical performance of HBPPSi/CE resins were systemically evaluated. It is found that the incorporation of HBPPSi into CE network obviously not only catalyzes the curing of CE, but also changes the chemical structure of resultant networks, and thus results in significantly decreased dielectric loss, improved thermal stability, and flame retardancy as well as water absorption resistance. For example, in the case of the modified CE resin with 10 wt% HBPPSi, its limited oxygen index is about 36.0, about 1.3 times of that of neat CE resin, its char yield at 800°C increases from 31.6 to 35.4 wt%; in addition, its dielectric loss is only about 61% of that of neat CE resin at 1 kHz. All these changes of properties are discussed from the view of the structure–property relationship. The significantly improved integrated properties of CE resin provide a great potential to be used as structural and functional materials for many cutting‐edges fields. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A novel thermally conductive Polyamide 6 (PA6) with good fire resistance was prepared by introducing a phosphorous-nitrogen flame retardant (FR) and platelet-shaped hexagonal boron nitride (hBN) into the matrix. With high thermal conductivity and good flame retardancy, the material is suitable for applications in electronic and electrical devices. The limiting oxygen index (LOI) changes for various loadings content of FR. However this formulation still does not show an ideal fire resistance, due to the appearance of melt dripping behavior during the UL 94 test. With the extra introduction of 3 vol% and 5 vol% hBN, the melt dripping behavior during the burning process completely disappeared. The hBN also increased the thermal conductivity. Furthermore PA6 compounded with FR and hBN showed a better thermal stability than neat PA6. The morphology of the char residues was investigated by scanning electron microscopy (SEM). The flaky hBN acted as the framework in the char structure and the rigid hBN could effectively break the bubble-shaped char on the surface of the residues which resulted in the enhancement of the strength and compactness of the char.  相似文献   

3.
The functions of nanoclay and three different boron containing substances, zinc borate (ZnB), borophosphate (BPO4), and boron silicon containing preceramic oligomer (BSi), were studied to improve the flame retardancy of polypropylene (PP)‐nanoclay‐intumescent system composed of ammonium polyphosphate (APP) and pentaerythritol (PER). The flame retardancy of PP composites was investigated using limiting oxygen index (LOI), UL‐94 standard, thermogravimetric analysis (TGA), and cone calorimeter. According to the results obtained, the addition of 20 wt% intumescent flame retardant (IFR) improved the flame retardancy by increasing the char formation. Addition of clay slightly increases the LOI value and reduces the maximum heat release rate (HRR). Addition of clay also increases the barrier effect due to intumescent char, especially in thin samples. Boron compounds show their highest synergistic effect at about 3 wt% loading. According to UL‐94 test and LOI test, 3 wt% ZnB containing composite shows the highest rating (V0) and BPO4 containing sample shows the highest LOI value (26.5). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A novel toughened cyanate ester (CE) resin with good dielectric properties and thermal stability was developed by copolymerizing 2,2′‐bis(4‐cyanatophenyl)iso‐propylidene (BCE) with a combined modifier (HBPSiEP) made up of hyperbranched polysiloxane (HBPSi) and epoxy (EP) resin. HBPSi was synthesized through the hydrolysis of 3‐(trimethoxysilyl)propyl methacrylate. The effect of differing stoichiometries of HBPSiEP on the curing characteristics and performance of BCE resin is discussed. Results show that the incorporation of HBPSiEP can not only effectively promote the curing reaction of BCE, but can also significantly improve the toughness of the cured BCE resin. In addition, the toughening effect of HBPSiEP is greater than single EP resin. For example, the impact strength of modified BCE resin with 30 wt% of HBPSiEP is 23.3 KJ/m2, which is more than 2.5 times of that of pure BCE resin, while the maximum impact strength of EP/BCE resin is about 2 times of pure BCE resin. It is worthy to note that HBPSiEP/BCE resins also exhibit improved thermal stability, dielectric properties, and flame retardancy, suggesting that the novel toughened CE resins have great potentiality to be used as a matrix for advanced functional composites or electronic packing resins. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Conferring the flame retardant performance and thermal conductivity simultaneously for epoxy resin (EP) thermosets was significant for fire safety and thermal management applications of electrical and electronic devices. Herein, the graphitic carbon nitride (g‐C3N4) with desired amount was assembled on the surface of ammonium polyphosphate (APP), and the obtained APP/g‐C3N4 (CN‐APP) was characterized and confirmed by X‐ray diffraction, Fourier transform infrared spectroscopy tests, scanning electron microscopy, and transmission electron microscopy. CN‐APP was incorporated into EP and then cured with m‐phenylenediamine. The thermal conductive value of EP/CN‐APP thermosets achieved 1.09 W·mK?1, and the samples achieved UL‐94 V‐0 grade during vertical burning tests with the limiting oxygen index of 30.1% when 7 wt% CN‐APP with the mass fraction of APP/g‐C3N4 of 9/1 was incorporated. For comparative investigation, equal amount of individual g‐C3N4 was introduced into EP thermosets, and the thermal conductivity was only 0.4 W·mK?1. Compared with pure EP, the addition of CN‐APP enhanced the glass transition temperature of EP/CN‐APP thermosets and promoted the generation of more expanded, coherent, and compact char layer during combustion. Consequently, the heat release and smoke production of EP/CN‐APP thermosets were greatly suppressed and led to the improvement of fire safety of materials. It was an alternative and promising approach for preparing high‐performance polymeric materials especially used in integrated electronic devices.  相似文献   

6.
A 2,6‐dimethylphenol‐dipentene dicyanate ester ( DPCY ) was synthesized from the reaction of 2,6‐dimethylphenol‐dipentene adduct and cyanogen bromide. The proposed structure was confirmed by Fourier transform infrared (FTIR), elemental analysis, mass, and nuclear magnetic resonance (NMR) spectra. DPCY was then cured by itself or cured with bisphenol A dicyanate ester ( BADCY ). Thermal properties of cured epoxy resins were studied using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), dielectric analysis (DEA), and thermogravimetric analysis (TGA). These data are compared with those of BADCY . The cured DPCY exhibits a lower dielectric constant (2.61 at 1 MHz), dissipation factor (29.3 mU at 1 MHz), thermal stability (5% degradation temperature and char yield are 429 °C and 17.64%, respectively), glass transition temperature (246 °C by TMA and 258 °C by DMA), coefficient of thermal expansion (33.6 ppm before Tg and 134.1 ppm after Tg), and moisture absorption (0.95% at 48 h) than those of BADCY , but higher moduli (5.12 GPa at 150 °C and 4.60 GPa at 150 °C) than those of the bisphenol A system. The properties of cured cocyanate esters lie between cured BADCY and DPCY , except for moduli. Moduli of some cocyanate esters are even higher than those of cured BADCY and DPCY . A positive deviation from the Fox equation was observed for cocyanate esters. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3986–3995, 2004  相似文献   

7.
A 2,6‐dimethyl phenol‐dicyclopentadiene novolac (DCPDNO) was synthesized from dicyclopentadiene and 2,6‐dimethyl phenol, and the resultant DCPDNO was reacted with cyanogen bromide into 2,6‐dimethyl phenol‐dicyclopentadiene cyanate ester (DCPDCY). The structures of the novolac and cyanate ester were confirmed with Fourier transform infrared spectroscopy, elemental analysis, mass spectrometry (MS), and nuclear magnetic resonance. For the purpose of increasing the mobility of residual DCPDCY during the final stage of curing and achieving a complete reaction of cyanate groups, a small quantity of a monofunctional cyanate ester, 4‐tert‐butylphenol cyanate ester (4TPCY), was added to DCPDCY to form the cyanate ester copolymer. The synthesized DCPDCY was then cured with 4TPCY at various molar ratios. The thermal properties of the cured cyanate ester resins were studied with dynamic mechanical analysis, dielectric analysis, and thermogravimetric analysis. These data were compared with those of the commercial bisphenol A cyanate ester system. Compared with the bisphenol A cyanate ester system, the cured DCPDCY resins exhibited lower dielectric constants (2.52–2.67 at 1 GHz), dissipation factors (0.0054–0.0087 at 1 GHz), glass‐transition temperatures (261–273 °C), thermal stability (5% degradation temperature at 406–450 °C), thermal expansion coefficients (4.8–5.78 × 10?5/°C before the glass‐transition temperature), and moisture absorption (0.8–1.1%). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 671–681, 2005  相似文献   

8.
In order to improve the flame retardant of polylactide (PLA), the synergistic effect of graphitic carbon nitride (g‐C3N4) with commercial‐available flame retardants melamine pyrophosphate (MPP) and 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) was investigated. The PLA composites containing 5 wt% g‐C3N4 and 10 wt% DOPO had a highest limited oxygen index (LOI) value of 29.5% and reached the V‐0 rating of UL‐94 test. The cone calorimeter tests exhibited that DOPO had a better synergistic effect with g‐C3N4 than MPP to improve flame retardancy of PLA. The peak heat release rate (pHRR) and total heat release (THR) of PLA composites containing 10 wt% DOPO could be reduced by 25.2% and 23.6%, respectively, as compared with those of pure PLA. The presence of rich phosphorus element and aromatic groups in DOPO contributed to obtain continuous compact char layer and increase the graphitization level of char residues, thereby, resulting in improving the flame retardancy of PLA together with g‐C3N4. In addition, the incorporation of DOPO can serve as a plasticizer to reduce the complex viscosity, improving the processability of PLA composites.  相似文献   

9.
An efficient method was reported to fabricate boron nitride (BN) nanosheets using a sonication–centrifugation technique in DMF solvent. Then non‐covalent functionalization and covalent functionalization of BN nanosheets were performed by octadecylamine (ODA) and hyperbranched aromatic polyamide (HBP), respectively. Then, three different types of epoxy composites were fabricated by incorporation of BN nanosheets, BN‐ODA, and BN‐HBP. Among all three epoxy composites, the thermal conductivity and dielectric strength of epoxy composites using BN‐HBP nanosheets display the highest value, efficiently enhancing to 9.81 W/m K at 50 vol% and 34.8 kV/mm at 2.7 vol% (increase by 4057% and 9.4% compared with the neat epoxy), respectively. The significantly improved thermal conductivity and dielectric strength are attributed to the large surface area, which increases the contact area between nanosheets and nanosheets, as well as enhancement of the interfacial interaction between nanosheets and epoxy matrix. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
《先进技术聚合物》2018,29(10):2574-2582
Ternary flame‐retardant modified cyanate ester blends (CEPG and CEPA) are formed by combining triazine compounds (TGIC or TAIC) and 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide with cyanate ester resin. The curing behaviors, thermal and mechanical properties, and the flame‐retardant properties are investigated. The results show that the CEPG and CEPA blends result in lower curing temperatures and glass transition temperatures than those of neat CE. Both of CEPG and CEPA blends significantly improve the flame‐retardant properties of CE resins, and UL‐94V‐0 rate is achieved for CEPG‐1.0 and CEPA‐0.5. The dielectric constant and loss of CEPA blends are lower than those of CEPG blend with the same phosphors content, and both of them are lower than those of neat CE. Therefore, the ternary flame‐retardant modified cyanate ester blends provide 2 ways for composites of producing printed circuit board with high flame‐retardant property and low dielectric constant and loss.  相似文献   

11.
Novel modified cyanate ester resins (EPMPS‐n/BADCy), with significantly decreased dielectric loss and improved toughness, were developed by copolymerizing the cyanate ester resin, 2, 2′‐bis (4‐cyanatophenyl) isopropylidene resin) (BADCy), with an epoxidized methyl phenyl silicone resin (EPMPS). The curing behavior of EPMPS‐n/BADCy and the typical properties of the corresponding cured EPMPS‐n/BADCy were systematically investigated. The results show that the addition of EPMPS into BADCy can not only accelerate the curing reaction of BADCy, but also decrease dielectric loss and enhance the impact strength as well as water resistance. For example, in the case of the modified BADCy resin with 15 wt%EPMPS, its impact strength is 17.8 kJ/m2, about 3 times of that of pure BADCy resin and its water absorption is only 0.25%, about one‐half of that of pure BADCy resin. In addition, while the dielectric loss is only 79% of that of pure BADCy resin, while its dielectric constant remains constant over the frequency range of 1KHz‐1 MHz. The above results suggest that EPMPS‐n/BADCy have great potential to be used as the matrix or adhesive for advanced composites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A novel method is proposed to synthesize new mesoporous silica containing amine groups (MPSA), and it was further employed to modify bismaleimide‐dialllyl bisphenol (BD)/cyanate ester (CE) resin to form novel MPSA/BD/CE hybrids; in addition, the typical properties of MPSA/BD/CE were systematically investigated. Results show that these hybrids have very low dielectric constant and loss as well as good thermal properties. Compared with BD/CE resin, all hybrids have not only decreased dielectric constant and loss but also similar dependence of dielectric properties on frequency over the whole frequency from 10 to 106 Hz. Specifically, with the addition of MPSA to BD/CE resin, the dielectric constant reduces from 3.5 to 3.0, and the dielectric loss is only 85% of that of BD/CE resin. Note that all hybrids show better thermal resistance (reflected by higher glass transition temperature, decreased maximum degradation rate, and higher char yield at 800°C) than BD/CE resin. All these differences in macro‐properties are attributed to the different structure between MPSA/BD/CE hybrids and BD/CE resin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A novel kind of modified bismaleimide/cyanate ester (BCE) resins by copolymerizing with hyperbranched polysiloxane including high content of phenyl (HBPSi) was first reported. The effect of HBPSi on the curing mechanism, and that on the dielectric properties and flame retardancy of cured networks were systemically investigated. Results show that compared with BCE resin, HBPSi/BCE resin has obviously different cross-linked structure, and thus leading to simultaneously improved dielectric properties and flame retardancy. The reactions between HBPSi and the decomposition structure of BCE resin change the thermo-oxidative degradation mechanism of the first step in the thermo-oxidative degradation; in addition, the presence of HBPSi in BCE resin also significantly reduces the mass loss rate (MLR) and increases char yield at 800 °C under an air atmosphere. Therefore, the positive effect of HBPSi on improving the flame retardancy is attributed to the condensed phase mechanism. On the other hand, HBPSi/BCE resins exhibit improved dielectric properties (including decreased dielectric constant and loss) with increasing the content of HBPSi. More importantly, this investigation demonstrates that designing new polysiloxane with suitable chemical structure is important to develop high performance resins with attractive flame retardancy and dielectric properties.  相似文献   

14.
A novel cyanate resin was prepared by the reaction of 10-(2,5-Dihydroxyphenyl)-10-H-9-oxa-10-phospha-phenantbrene-10-oxide (DOPO-HQ) and 2, 2-Bis (4-cyanatophenyl) propane (BACY) when trace of cobalt(III) acetylacetonate(CoAt(III)) was added, The curing behavior during the reaction of DOPO-HQ/BACY/CoAt(III) system was analyzed by gelation time (GT), differential scanning calorimetry (DSC) and Fourier transformation infrared spectrometry (FTIR), respectively. Compared with the BACY/CoAt(III) system (GT = 1239?s, Tp (exothermic peak temperature) = 215?°C), the GT of DOPO-HQ/BACY/CoAt(III) system is 110?s at 180?°C, and the Tp is 154?°C when containing 10?wt % DOPO-HQ. The limit oxygen index (LOI) and vertical burning test (UL-94) demonstrate that the flame retardancy of BACY resin is improved by DOPO-HQ. Specifically, the DOPO-HQ/BACY resin prepared by a mass ratio of DOPO-HQ: BACY = 10:90 has a LOI value of 33.1% and a UL-94 of V-0 rating, while the LOI value of BACY resin is 28.5% and UL-94 is no rating. In addition, the DOPO-HQ/BACY resin containing 10?wt % DOPO-HQ has excellent dielectric properties, the dielectric constant (Dk) is 2.69 and dielectric loss (Df) is 0.007. The as-synthesized DOPO-HQ/BACY resin shows promising application prospect as electronic packaging materials.  相似文献   

15.
New high performance insulating composites based on hollow silica tubes (mHST) and bismaleimide/diallylbisphenol A (BDM/DBA) resin, which exhibit improved toughness, dielectric properties, and flame retardancy, were successfully developed. The effect of the amount of mHST on the properties of composites was systematically studied. Results show that the impact strength of the composite with 0.5 wt% mHST is about 2.2 times that of BDM/DBA resin. In addition, compared with BDM/DBA resin, the composites show lower and stable dielectric constant, better frequency stability of dielectric loss, significantly improved flame retardancy, and similarly outstanding thermal resistance. The reasons behind these attractive integrated properties are discussed from the view of structure–property relationship. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The aim of this study was to improve thermal conductivity, thermal stability, and mechanical properties of bisphenol A dicyanate ester with the addition of nanodiamond. Cyanate ester/nanodiamond composites containing various ratios of nanodiamond were prepared. Thermal stability and thermal conductivity of the samples were evaluated by thermogravimetric analysis, differential scanning calorimetry, and laser flash method, respectively. The samples were characterized with the analysis such as gel content, water absorption capacity, and stress–strain test. Hydrophobicity of the samples was determined by contact angle measurements. Moreover, the surface morphology of the samples was investigated by a scanning electron microscopy. The obtained results prove that the cyanate ester/nanodiamond composites have good thermal and mechanical properties and can be used in many applications such as the electronic devices, materials engineering, and other emergent. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Viscoelastic ature is one of the key features of polymeric composites. A series of cyanate ester (CE)‐based composites with different aluminum nitride (AlN) contents for high performance electronic packaging, coded as AlN/CE, were developed; the viscoelastic nature of AlN/CE composites was intensively investigated by employing dynamic mechanical analysis (DMA). Results show that the AlN content has a great effect on dynamic mechanical properties of AlN/CE composites. The storage modulus in the glassy region increases linearly with the addition of AlN as well as the increase of AlN content. Meanwhile, all composites also exhibit notably higher loss modulus than cured CE resin due to the appearance of new energy dissipation forms. In addition, the incorporation of AlN has a significant effect on damping factor peak. All reasons leading to these phenomena are analyzed from the view of structure–property relationship. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
In the search for new packaging materials for the electrical/electronics industry, three types of polymer composites have been studied. Silicone/boron nitride powders, polyurethane/alumina powders, and polyurethane/carbon fibers have all been synthesized to study the moisture–absorption kinetics, thermal conductivities, and the dielectric loss spectra under various levels of humidity. The water uptake data indicate that water molecules are absorbed not only by the polymer matrix, but also by the interfaces introduced by the fillers. For all materials, the dielectric relaxation spectroscopy shows the presence of a peak in the 175–200 K range, which is largely due to absorbed water. The silicone/boron nitride samples absorbed the least amount of moisture. Incorporating this result with the thermal conductivity data of the three types of polymer composites, it is concluded that silicone polymers embedded with boron nitride can best serve as the coating for the electronic devices that require heat dissipation and moisture resistance, in addition to electrical insulation. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2259–2265, 1998  相似文献   

19.
Novel glycidyl methacrylate–butyl acrylate–maleic anhydride (GBM) terpolymers with different molecular weights were synthesized by radical polymerization and characterized using fourier transform infrared, nuclear magnetic resonance (1H‐NMR and 13 C‐NMR), and gel permeation chromatography. Each GBM terpolymer was used to modify aluminum nitride (AlN), and the modified AlN, coded as AlN(GBM), was added to 2,2′‐bis(4‐cyanatophenyl)isopropylidene (CE) resin for preparing composites. Composites based on original AlN or γ‐(2,3‐epoxypropoxy)propyltrimethoxysilane‐modified AlN (AlN(K)) were also prepared for comparison. Although GBM and γ‐(2,3‐epoxypropoxy)propyltrimethoxysilane have similar reactive groups, the results indicate that GBM shows more attractive integrated advantages, reflected by the fact that CE/AlN(GBM) composites have better thermal stability, higher thermal conductivity, and higher glass transition temperature than those of CE/AlN(K). These properties result from better dispersion of fillers, improved interfacial adhesion between fillers and CE resin, and increased cross‐linking density. This study demonstrates that the nature of the coupling agents is an important factor to develop high performance composites for cutting‐edge industries. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
High‐performance insulating materials have been increasingly demanded by many cutting‐edge fields. A new kind of high‐performance composites with high thermal conductivity, low coefficient of thermal expansion (CTE), and low dielectric loss was successfully developed, consisting of hexagonal boron nitride (hBN) and 2,2′‐diallylbisphenol A (DBA)‐modified 4,4′‐bismaleimidodiphenylmethane (BDM) resin. The effects of hBN and its content on the integrated properties, including curing behavior of uncured system, the CTE, thermal conductivity, dielectric properties, and thermal resistance of cured composites, are systematically investigated and discussed. Results show that there are amino groups on the surface of hBN, which supply desirable interfacial adhesion between hBN and BDM/DBA resin and a good dispersion of hBN in the resin. With the increase of the hBN content, the thermal conductivity increases linearly, whereas the CTE value decreases linearly; in addition, dielectric loss gradually decreases and becomes more stable over the whole frequency from 10 to 109 Hz. In the case of the composite with 35 wt% hBN, its thermal conductivity, CTE in glassy state, and dielectric loss are about 3.3, 0.63, and 0.5 times of the corresponding value of BDM/DBA resin, respectively. These attractive integrated properties suggest that hBN/BDM/DBA composites are high‐performance insulating materials, which show great potential in applications, especially for electronics and aerospace industries. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号