首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The design of narrow band gap (NBG) donors or acceptors and their application in organic solar cells (OSCs) are of great importance in the conversion of solar photons to electrons. Limited by the inevitable energy loss from the optical band gap of the photovoltaic material to the open‐circuit voltage of the OSC device, the improvement of the power conversion efficiency (PCE) of NBG‐based OSCs faces great challenges. A novel acceptor–donor–acceptor structured non‐fullerene acceptor is reported with an ultra‐narrow band gap of 1.24 eV, which was achieved by an enhanced intramolecular charge transfer (ICT) effect. In the OSC device, despite a low energy loss of 0.509 eV, an impressive short‐circuit current density of 25.3 mA cm−2 is still recorded, which is the highest value for all OSC devices. The high 10.9 % PCE of the NBG‐based OSC demonstrates that the design and application of ultra‐narrow materials have the potential to further improve the PCE of OSC devices.  相似文献   

2.
Dye‐sensitized solar cells (DSSCs) based on organic dyes adsorbed on oxide semiconductor electrodes, such as TiO2, ZnO, or NiO, which have emerged as a new generation of sustainable photovoltaic devices, have attracted much attention from chemists, physicists, and engineers because of enormous scientific interest in not only their construction and operational principles, but also in their high incident‐solar‐light‐to‐electricity conversion efficiency and low cost of production. To develop high‐performance DSSCs, it is important to create efficient organic dye sensitizers, which should be optimized for the photophysical and electrochemical properties of the dyes themselves, with molecular structures that provide good light‐harvesting features, good electron communication between the dye and semiconductor electrode and between the dye and electrolyte, and to control the molecular orientation and arrangement of the dyes on a semiconductor surface. The aim of this Review is not to make a list of a number of organic dye sensitizers developed so far, but to provide a new direction in the epoch‐making molecular design of organic dyes for high photovoltaic performance and long‐term stability of DSSCs, based on the accumulated knowledge of their photophysical and electrochemical properties, and molecular structures of the organic dye sensitizers developed so far.  相似文献   

3.
Sol-Gel Processed TiO2 Films for Photovoltaic Applications   总被引:12,自引:0,他引:12  
The dye sensitized solar cells (DYSC) provides a technically and economically credible alternative concept to present day p-n junction photovoltaic devices. In contrast to the conventional systems where the semiconductor assumes both the task of light absorption and charge carrier transport the two functions are separated here. Light is absorbed by a sensitizer which is anchored to the surface of a wide band gap semiconductor. Charge separation takes place at the interface via photo-induced electron injection from the dye into the conduction band of the solid. Carriers are transported in the conduction band of the semiconductor to the charge collector. The present concepts evolved in the context of research on mesoporous oxide semiconductor films prepared via a sol-gel process. The use of transition metal complexes having a broad absorption band in conjunction with oxide films of nanocrstalline morphology permits to harvest a large fraction of sunlight. Nearly quantitative conversion of incident photons into electric current is achieved over a large spectral range extending over the whole visible region. Overall solar (standard AM 1.5) to electric conversion efficiencies over 10% have been reached. There are good prospects to produce these cells at lower cost than conventional devices. The lecture will present the current state of the field. We shall discuss new concepts of the dye-sensitized nanocrystalline solar cell (DYSC) including solid heterojunction variants and analyze the perspectives for the future development of the technology into the next millennium.  相似文献   

4.
Dye‐sensitized solar cells (DSSCs) have received much attention in recent years owing to their efficient conversion of sunlight to electricity. DSSCs became successful alternatives to silicon photovoltaic devices by virtue of their low fabrication costs and easy preparation methods. In DSSCs the dye plays the key role. This review summarizes the applications of osmium sensitizers in DSSCs. We also briefly discussed their synthesis and the effect of various electrolyte systems on device efficiencies.  相似文献   

5.
Photovoltaic technology provides a promising approach for solar energy conversion. One significant factor limiting the efficiency is the poor light harvesting of solar energy, which is related to the mismatch between the energy distribution of photons and the absorption of semiconductor materials or dye. Light-conversion phosphors have been explored as spectral converters to improve the light-harvesting ability in sensitized solar cells. Many progressive studies have been conducted to expand the family of light-conversion phosphors and exploit their application in sensitized solar cells, bringing emerging opportunities to develop commercial sensitized solar cells. In this review, we survey the development of light-conversion phosphors in sensitized solar cells. First, the application and conversion mechanism of light-conversion phosphors, including up-conversion phosphors, down-conversion phosphors, up/down conversion phosphors, and long-lasting phosphors, are summarized in detail. After that, the challenging problems and possible solutions of applying light-conversion phosphors to sensitized solar cells are discussed. The review also highlights some new ideas in the development of sensitized solar cells and the application of light-conversion phosphors in other solar technology.  相似文献   

6.
太阳能光伏作为一种把太阳光转换成电能的绿色可再生能源倍受青睐。通过下转换材料将太阳光谱中的紫外光转换为可见光后被太阳能电池更高效地利用,是提高电池光电转换效率的一条可行性途径,引起了科学界的广泛关注。本文将综述用于太阳能电池的下转换材料研究成果,重点介绍基于发光金属配合物的下转换材料及其光伏应用研究进展;同时展望基于太阳能电池用下转换材料开发的发展机遇,以及亟需解决的问题和途径。  相似文献   

7.
太阳能电池的光谱响应特性和光电转换效率与光伏材料的微观能带结构及其宏观组装方式密切相关。无论使用哪种光伏材料,普通单结或单层太阳能电池都只能对部分波段的太阳光进行有效利用。宽光谱研究的目标是要使太阳能电池更好地利用太阳光谱所覆盖的全部波段范围的能量,从而提高太阳能电池光电转换效率。本文从化学角度综述了实现宽光谱太阳能电池的基本方法和当前的研究进展,其中包括叠层太阳能电池、中间带太阳能电池、量子点太阳能电池、热光伏太阳能电池、上转换和下转换、分子基柔性太阳能电池等方法。  相似文献   

8.
Hybrid organic‐inorganic perovskite solar cells (PSCs) have become a shining star in the photovoltaic field due to their spectacular increase in power conversion efficiency (PCE) from 3.8 % to over 23 % in just few years, opening up the potential in addressing the important future energy and environment issues. The excellent photovoltaic performance can be attributed to the unique properties of the organometal halide perovskite materials, including high absorption coefficient, tunable bandgap, high defect tolerance, and excellent charge transport characteristics. The authors entered this field when pursuing research on dye‐sensitized solar cells (DSCs) by leveraging nanorods arrays for vectorial transport of the extracted electrons. Soon after, we and others realized that while the organometal halide perovskite materials have excellent intrinsic properties for solar cells, interface engineering is at least equally important in the development of high‐performance PSCs, which includes surface defect passivation, band alignment, and heterojunction formation. Herein, we will address this topic by presenting the historical development and recent progress on the interface engineering of PSCs primarily of our own group. This review is mainly focused on the material and interface design of the conventional n‐i‐p, inverted p‐i‐n and carbon electrode‐based structure devices from our own experience and perspective. Finally, the challenges and prospects of this area for future development will also be discussed.  相似文献   

9.
The design of narrow band gap (NBG) donors or acceptors and their application in organic solar cells (OSCs) are of great importance in the conversion of solar photons to electrons. Limited by the inevitable energy loss from the optical band gap of the photovoltaic material to the open‐circuit voltage of the OSC device, the improvement of the power conversion efficiency (PCE) of NBG‐based OSCs faces great challenges. A novel acceptor–donor–acceptor structured non‐fullerene acceptor is reported with an ultra‐narrow band gap of 1.24 eV, which was achieved by an enhanced intramolecular charge transfer (ICT) effect. In the OSC device, despite a low energy loss of 0.509 eV, an impressive short‐circuit current density of 25.3 mA cm−2 is still recorded, which is the highest value for all OSC devices. The high 10.9 % PCE of the NBG‐based OSC demonstrates that the design and application of ultra‐narrow materials have the potential to further improve the PCE of OSC devices.  相似文献   

10.
Expanded porphyrins with the absorption profile down to the infrared region through increased π‐conjugation are suitable candidates for a low energy sensitizer. Oxasmaragdyrin boron complexes, a class of aromatic‐core‐modified expanded porphyrin with 22 π‐electrons, have been recently utilized as an efficient low energy sensitizer in dye‐sensitized solar cells. In this paper, we have prepared a series of eight novel boryl oxasmaragdyrins through molecular engineering on the periphery and their overall photovoltaic performances in dye‐sensitized solar cells are evaluated. With the help of photophysical, electrochemical, and photovoltaic studies, it is revealed that molecular structure, especially the number and position of the donor–acceptor groups play a pivotal role in their photovoltaic performance. Presence of the two well‐separated split Soret bands in the 400–500 nm region of UV/Vis spectrum ensures broader coverage of absorption wavelengths. Even though the two‐anchoring‐group dyes ( SM5 – SM8 ) bind strongly to TiO2 compared to one‐anchoring‐group dyes ( SM1 – SM4 ), the latter have superior photovoltaic performance than the former. Dye SM1 , with two hexyloxyphenyl donors and one carboxylic acid anchor showed the best overall conversion efficiency of 4.36 % (JSC=10.91 mA cm?2; VOC=0.59 V; FF=0.68). This effective modulation of photovoltaic performance through structural engineering of the dyes will serve as a guideline for the future design of efficient low energy light‐harvesting sensitizers.  相似文献   

11.
Conjugated polymers are essential for solution‐processable organic opto‐electronic devices. In contrast to the great efforts on developing new conjugated polymer backbones, research on developing side chains is rare. Herein, we report branched oligo(ethylene glycol) (OEG) as side chains of conjugated polymers. Compared with typical alkyl side chains, branched OEG side chains endowed the resulting conjugated polymers with a smaller π‐π stacking distance, higher hole mobility, smaller optical band gap, higher dielectric constant, and larger surface energy. Moreover, the conjugated polymers with branched OEG side chains exhibited outstanding photovoltaic performance in polymer solar cells. A power conversion efficiency of 5.37 % with near‐infrared photoresponse was demonstrated and the device performance could be insensitive to the active layer thickness.  相似文献   

12.
A series of subphthalocyanines (SubPcs) bearing a carboxylic acid group either at the peripheral or axial position have been designed and synthesized to investigate the influence of the COOH group positions on the dye‐sensitized solar cell (DSSC) performance. The DSSC devices based on SubPcs with axially substituted carboxylic acid groups showed low photovoltaic performance, whereas peripherally substituted one exhibited higher power conversion efficiency owing to improved injection from LUMO of SubPcs to the TiO2 conduction band.  相似文献   

13.
Searching new light‐absorbing materials to replace toxic lead halide in solar cells is very important and highly desirable. In this research, we firstly demonstrated that tellurium iodide (TeI4) could be used as a light‐absorbing material in solar cells due to its suitable optical band gap and the active lone‐pair electron orbital in Te4+. The best power conversion efficiency (PCE=3.56%) was achieved with a concentration of 0.9 M TeI4 in DMF:DMSO (4 : 1, v,v) without any heat treatment or antisolvent dripping. Our study indicates the promising potential of TeI4 for photovoltaic and optoelectronic applications.  相似文献   

14.
Phase transition from WO3 to sub‐stoichiometric WO2.9 by a facile method has varied the typical semiconductor to be quasi‐metallic with a narrowed band gap and a shifted Femi energy to the conduction band, while maintaining a high crystallinity. The resultant WO2.9 nanorods possess a high total absorption capacity (ca. 90.6 %) over the whole solar spectrum as well as significant photothermal conversion capability, affording a conversion efficiency as high as around 86.9 % and a water evaporation efficiency of about 81 % upon solar light irradiation. Meanwhile, the promising potential of the nanorods for anticancer photothermal therapy have been also demonstrated, with a high photothermal conversion efficiency (ca. 44.9 %) upon single wavelength near‐infrared irradiation and a high tumor inhibition rate (ca. 98.5 %). This study may have opened up a feasible route to produce high‐performance photothermal materials from well‐developed oxides.  相似文献   

15.
Dye sensitized solar cells (DSSCs) and bulk heterojunction (BHJ) solar cells have been the subject of intensive academic interest over the past two decades, and significant commercial effort has been directed towards this area with the vison of developing the next generation of low cost solar cells. Materials development has played a vital role in the dramatic improvement of both DSSC and BHJ solar cell performance in the recent years. Organic conjugated polymers and small molecules that absorb solar light in the visible and near infrared (NIR) regions represent a class of emering materials and show a great potential for the use of different optoelectronic devices such as DSSCs and BHJ solar cells. This account describes the emering class of near infrared (NIR) organic polymers and small molecules having donor and acceptors units, and explores their potential applications in the DSSCs and BHJ solar cells.  相似文献   

16.
卟啉类光敏剂在染料敏化太阳能电池中的应用   总被引:5,自引:0,他引:5  
染料敏化太阳能电池结合了染料光敏剂和无机半导体的优势,具有较宽的光谱响应范围,制造工艺简单、成本较低,对环境友好,应用前景广阔,因而备受人们的关注。本文以卟啉配合物为主线,介绍光敏太阳能电池的基本构造和光电原理,从改善电池性能的角度,综述了各种卟啉类光敏剂在染料太阳能电池中的应用,讨论了卟啉配合物及其超分子结构对光电转化率的影响机理。  相似文献   

17.
Dye‐sensitized solar cells (DSSCs) have attracted considerable attention in recent years as they offer the possibility of low‐cost conversion of photovoltaic energy. This account focuses on recent advances in molecular design and technological aspects of sensitizers based on metal complexes, metal‐free organics and tetrapyrrolic compounds which include porphyrins, phthalocyanines as well as corroles. Special attention has been paid to the design principles of these dyes, and co‐sensitization, an emerging technique to extend the absorption range, is also discussed as a way to improve the performance of the device. This account also focuses on recent advances of efficient ruthenium sensitizers as well as other metal complexes and their applications in DSSCs. Recent developments in the area of metal‐free organic and tetrapyrrolic sensitizers are also discussed. DOI 10.1002/tcr.201100044  相似文献   

18.
We show that the sub‐bandgap excitation of a directly coupled CdSe quantum dot (QD)–TiO2 system induces electron injection from CdSe levels to the conduction band of TiO2, leading to spectral extension of the light response. We anticipate that this study presents a useful guideline for improving the conversion efficiency of QD‐sensitized solar cells.  相似文献   

19.
Photovoltaic technology is an alternative resource for renewable and sustainable energy and low costs organic photovoltaic devices such as bulk-heterojunction (BHJ) solar cells, which are selective candidates for the effective conversion of solar energy into electricity. Asymmetric phthalocyanines containing electron acceptor and donor groups create high photovoltaic conversion efficiency in dye sensitized solar cells. In this study, a new unsymmetrical zinc phthalocyanine was designed and synthesized including thiophene and amine groups at peripherally positions for BHJ solar cell. The structure of the targeted compound (4) was characterized comprehensively by FT-IR, UV–Vis, 1H-NMR, and MALDI-TOF MS spectroscopies. The potential of this compound in bulk heterojunction (BHJ) photovoltaic devices as donor was also researched as function of blend ratio (blend ratio was varied from 0.5 to 4). For this purpose, a series of BHJ devices with the structure of fluorine doped indium tin oxide (FTO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/ ZnPc:[6,6]- phenyl-C61- butyric acid methyl ester (PCBM) blend/Al with identical thickness of ZnPc:PCBM layer were fabricated and characterized. Photo current measurements in 4 revealed that the observed photo current maximum is consistent with UV-vis spectra of the compound of 4. Preliminary studies showed that the blend ratio has a critical effect on the BHJ device performance parameters. Photovoltaic conversion efficiency of 6.14% was achieved with 4 based BHJ device.  相似文献   

20.
Four new unsymmetric platinum(II) bis(aryleneethynylene) derivatives have been designed and synthesized, which showed good light‐harvesting capabilities for application as photosensitizers in dye‐sensitized solar cells (DSSCs). The absorption, electrochemical, time‐dependent density functional theory (TD‐DFT), impedance spectroscopic, and photovoltaic properties of these platinum(II)‐based sensitizers have been fully characterized. The optical and TD‐DFT studies show that the incorporation of a strongly electron‐donating group significantly enhances the absorption abilities of the complexes. The maximum absorption wavelength of these four organometallic dyes can be tuned by various structural modifications of the triphenylamine and/or thiophene electron donor, improving the light absorption range up to 650 nm. The photovoltaic performance of these dyes as photosensitizers in mesoporous TiO2 solar cells was investigated, and a power conversion efficiency as high as 1.57 % was achieved, with an open‐circuit voltage of 0.59 V, short‐circuit current density of 3.63 mA cm?2, and fill factor of 0.73 under simulated AM 1.5G solar illumination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号